Buoyancy Calculations

Project:
Project No.: Project Number

$$
\begin{aligned}
& \text { Analyst: } \\
& \begin{aligned}
& \text { ASD } \\
& \text { Calculations Checked By: } \\
& \text { Latest Revision: } \\
& \hline \text { ALJ } \\
& 2 / 27 / 2023
\end{aligned}
\end{aligned}
$$

Spreadsheet Description

- The spreadsheet below is used to calculate the Factor of Safety against Buoyant uplift of the LWM

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints
2) The LWM structure will be submerged during the design event.
3) Negative buoyancy is uplift, positive numbers equals downward.
4) Ballast material remains intact and is not scoured out.
5) The uplift due to racking material is evenly dividing among all layers.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Input (Cells requiring input from a dropdown list) Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:


```
FOS施 = buoyancy factor of safety
```

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design buoyancy factor of safety $\left(\mathrm{FOS}_{\mathrm{b}}\right)$ for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	$\mathrm{FOS}_{\text {atamg }}$	FOS ${ }_{\text {bospen }}$	$\begin{aligned} & \mathrm{FOS}_{\text {netera }} \\ & \mathrm{FOS}_{\text {overaming }} \end{aligned}$
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Large Wood Material Force - Dry ($\mathrm{F}_{\text {wiwal }}$)

$$
F_{L W M d}=V_{L W M d} * \gamma_{w o o d}
$$

Equation 3
$V_{L \text { LWMy }}=$ volume of dry large wood material
Comment: Assumed to be zero because structure assumed to be submerged during design event.

2. Boulder Ballast Force ($F_{\text {boulder }}$)

$\mathrm{N}_{\text {bouldersub }}$			Number of submerged boulders (from design)	$F_{\text {boulder }}=F_{\text {bouldersub }}+F_{\text {boulderdry }}$	Equation 5
$\mathrm{d}_{\text {bouldersub }}$	2.5	ft	Effective diameter of submerged boulder (ft, from spec)	$\begin{aligned} & F_{\text {bouldersub }}=N_{\text {boulder sub }} * \frac{\pi}{*} * d_{\text {bouldersub }}^{3} *\left(\gamma_{\text {boulder }}-\gamma_{w}\right) \\ & N_{\text {bouldersub }}=\text { number of submerged boulders } \\ & d_{\text {bouldersub }}=\text { effective diameter of submerged boulders } \\ & \gamma_{\text {boulder }}=\text { unit weight of boulders } \end{aligned}$	Equation 6
$\gamma_{\text {boulder }}$	146	$\mathrm{lb} / \mathrm{ft}^{3}$	unit weight of boulders (Table 5)		
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	unit weight of water		
$\mathrm{F}_{\text {bouldersub }}$		lb	Eqn. 6	$F_{\text {boulderdry }}=N_{\text {boulderdry }} * \frac{\pi}{6} * d_{\text {boulderdry }}^{3} * \gamma_{\text {boulder }}$	Equation 7
$\mathrm{N}_{\text {boulderdry }}$			Number of dry boulders (from detail)	$N_{\text {boulderdry }}=$ number of unsubmerged boulders $d_{\text {boulderdry }}=$ effective diameter of unsubmerged boulders	
$\mathrm{d}_{\text {boulderdry }}$	2.5	ft	Effective diameter of dry boulder (ft, from spec)		
$\mathrm{F}_{\text {boulderdry }}$		Ib	Eqn. 7		
$F_{\text {boulder }}$		lb	Eqn. 5		

Comment: The intent is design without the use of boulders so it is assumed no boulders are used.

Buoyancy Calculations

Project:
Project No.:

Analyst:
 ASD ALJ 2/27/2023

3. Soil Backfill Force ($F_{\text {soil }}$)

$\mathrm{N}_{\text {logssub1 }}$	2		Number of Type 1 buried logs (from detail)
Leb1	26.5	ft	Average embedded length of Type 1 logs (from detail)
$\mathrm{d}_{\text {bole1 }}$	1.5	ft	Average diameter of Type 1 logs (from detail)
$\mathrm{h}_{\text {soilsub1 }}$	3	ft	Average height of submerged soil above Type 1 log (from detail)
$V_{\text {soilsub1 }}$	239	ft^{3}	Volume of submerged soil above Type 1 log (from detail)
$\mathrm{h}_{\text {soildry1 }}$		ft	Average height of dry soil above Type 1 log (from detail)
$V_{\text {soildry1 }}$		ft^{3}	Volume of dry soil above Type 1 log (from detail)
$\mathrm{N}_{\text {logssub2 }}$	1		Number of Type 2 buried logs (from detail)
$\mathrm{L}_{\mathrm{eb} 2}$		ft	Average embedded length of Type 2 logs (from detail)
$\mathrm{d}_{\text {bole2 }}$	2	ft	Average diameter of Type 2 logs (from detail)
$\mathrm{h}_{\text {soilsub2 }}$		ft	Average height of submerged soil above Type $2 \log$ (from detail)
$V_{\text {soilsub2 }}$		ft^{3}	Volume of submerged soil above Type $2 \log$ (from detail)
$\mathrm{h}_{\text {soildry2 }}$		ft	Average height of dry soil above Type 2 log (from detail)
$V_{\text {soildry2 }}$		ft^{3}	Volume of dry soil above Type 2 log (from detail)
$\mathrm{N}_{\text {logssub3 }}$	3		Number of Type 3 buried logs (from detail)
$\mathrm{L}_{\text {eb3 }}$		ft	Average embedded length of Type 3 logs (from detail)
$\mathrm{d}_{\text {bole3 }}$	1	ft	Average diameter of Type 3 logs (from detail)
$\mathrm{h}_{\text {soilsub3 }}$		ft	Average height of submerged soil above Type 3 log (from detail)
$V_{\text {soilsub3 }}$		ft^{3}	Volume of submerged soil above Type 3 log (from detail)
$\mathrm{h}_{\text {soildry3 }}$		ft	Average height of dry soil above Type 3 log (from detail)
$\mathrm{V}_{\text {soildry }}$		ft^{3}	Volume of dry soil above Type 3 log (from detail)
$\gamma_{\text {soil }}$	126	$\mathrm{lb} / \mathrm{ft}^{3}$	Specific Gravity of bank/backfill material (Table 5)
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
SG ${ }_{\text {rock }}$	2.64		Specific Gravity of Rock (Using unit weight of bedrock from Table 5)
e	0.31		Eqn. 14
$\gamma_{\text {sat }}$	141	$\mathrm{lb} / \mathrm{ft}^{3}$	Eqn. 13
γ^{\prime} soil	78.3	$\mathrm{lb} / \mathrm{ft}^{3}$	Eqn. 12
$\mathrm{F}_{\text {soil }}$	18,668	Ib	Eqn. 8

$F_{\text {soil }}=\sum_{i}^{n} V_{\text {soilsub }_{i}} * \gamma_{\text {soil }_{\prime}^{\prime}}^{\prime}+V_{\text {soildry }_{i}} * \gamma_{\text {soll }}$
Equation 8
$V_{\text {soilsub }_{i}}=L_{\text {eb }_{i}} d_{\text {bole }_{i}} h_{\text {soilsub }_{i}}$
$V_{\text {soilsubi }}=$ volume of submerged soil above $\log i$
$L_{\text {ebi }}=$ embedded length of $\log i$
$d_{\text {bolei }}=$ bole diameter of log i
$h_{\text {soilsubi }}=$ height of submerged soil above log i
$V_{\text {soildry }_{i}}=L_{e b_{i}} d_{\text {bole }_{i}} h_{\text {soildry }}^{i}$
Equation 10
$V_{\text {soildryi }}=$ volume of dry soil above log i
$h_{\text {soildryi }}=$ height of dry soil above $\log i$

$$
\gamma_{\text {soil }}=\left(99.2+18.6 * \log \left(d_{50}\right)\right)
$$

Equation 11
$d_{50}=$ median grain size in millimeters
$\gamma_{\text {soil }}^{\prime}=\gamma_{\text {sat }}-\gamma_{w}$
Equation 12
$\gamma_{\text {sat }}=\frac{\left(S G_{r o c k}+e\right) * \gamma_{w}}{1+e}$
Equation 13
$e=\frac{s G_{\text {rock }} * \gamma_{w}}{\gamma_{\text {soil }}}-1$
Equation 14

Buoyancy Calculations

Project:
Project No.:

Tucannon
Project Number

4. Pile Skin Friction

$\mathrm{N}_{\text {piles }}$			Number of piles (Design)
$\mathrm{d}_{\text {piles }}$	0.5	ft	Diameter of piles (Design)
$\mathrm{L}_{\text {piles }}$	7.5	ft	Embedded length of piles (Design)
k_{s}	1		Coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density)
Placement Method	Driven or Vibrated		Method of pile placement
Placement Multiplier	1		See RBDG (P. 52)
Pile Placement Location	Bed		Bed or Bank
soil	0.72	rad	Internal angle of friction of soils (Table 5)
$\gamma_{\text {soil }}$	137	$\mathrm{lb} / \mathrm{ft}^{3}$	Specific Weight of Soil
e	0.20		Eqn. 14
$\gamma_{\text {sat }}$	148	$\mathrm{lb} / \mathrm{ft}^{3}$	Eqn. 13
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
	638	$\mathrm{lb} / \mathrm{ft}^{2}$	Eqn 16
$\gamma_{\text {wood }}$	33	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of wood
$\mathrm{F}_{\text {piles-v }}$		lb	Eqn 15

$F_{\text {piles-v }}=N_{\text {piles }} * \pi * d_{\text {piles }} * L_{\text {piles }}\left(k_{s} * \tan \frac{2}{3} \emptyset * \sigma^{\prime}+\frac{d_{\text {ptes }}}{4} *\left(\gamma_{\text {wood }}-\gamma_{w}\right)\right)$
$N_{\text {piles }}=$ number of piles
$d_{\text {piles }}=$ diameter of piles
$L_{\text {piles }}=$ embedded length of piles
$k_{s}=$ coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and
density)
$\phi=$ internal angle of friction of soils
$\sigma^{\prime}=L_{\text {piles }} *\left(\gamma_{\text {sat }}-\gamma_{w}\right) \quad$ Equation 16

Assumptions:
${ }^{*} k_{\mathrm{s}}=1$
** This calculation is based on the assumption that piles are driven or vibrated into place. If piles are drilled or excavated, the associated coefficicient of lateral earth pressures shall be approx. 50% and 25% of the driven value, respectively.
*** For use in buoyancy calculations, piles must be mechanically fastened.
**** Top 2' of pile embedment disregarded for calculation to account for vortex shedding.
5. Large Wood Material Force - Submerged ($F_{\text {wMs }}$)
$F_{L W M A}=V_{L W M s} *\left(\gamma_{\text {wood }}-\gamma_{w}\right)$
$V_{\text {Lwns }}=$ volume of submerged large wood material
$\gamma_{\text {wood }}=$ unit weight of wood
$\gamma_{w}=$ unit weight of water

$\mathrm{N}_{\text {logssub1 }}$	2		Number of log type 1 (from detail)
$\mathrm{L}_{\text {log1 }}$	40	ft	Length of log type 1 (from detail)
$\mathrm{d}_{\text {bole1 }}$	1.5	ft	Diameter of log type 1 (from detail)
$\mathrm{d}_{\text {rw1 }}$	3.00	ft	Diameter of rootwad of log type 1 (from detail)
$\mathrm{V}_{\text {LWMs1 }}$	156	ft^{3}	Volume of LWM1
$\mathrm{N}_{\text {logssub2 }}$	2		Number of log type 2 (from detail)
$\mathrm{L}_{\text {eb2 }}$	25	ft	Length of log type 2 (from detail)
$\mathrm{d}_{\text {bole2 }}$	1.75	ft	Diameter of log type 2 (from detail)
$\mathrm{d}_{\text {rw2 }}$	4	ft	Diameter of rootwad of log type 2 (from detail)
$\mathrm{V}_{\text {LWMs2 }}$	150	ft^{3}	Volume of LWM2
$\mathrm{N}_{\text {logssub3 }}$	1		Number of log type 3 (from detail)
$\mathrm{L}_{\text {eb3 }}$	15	ft^{2}	Length of log type 3 (from detail)
$\mathrm{d}_{\text {bole3 }}$	0.75	ft	Diameter of log type 3 (from detail)

$\gamma_{s a t}=\frac{\left(S G_{\text {rock }}+e\right) \gamma_{\psi}}{1+e}$	Equation 13
$e=\frac{S C_{\text {rack }} \psi_{\psi}}{\gamma_{\text {moll }}}-1$	Equation 14

Volume of Rootwad
National Large Wood Manual. 2016
Equation 6-4 (p. 6-38)
$\mathrm{V}_{\mathrm{rw}}=\pi^{*} \mathrm{t}_{\mathrm{k}}{ }^{*} \mathrm{w}_{\mathrm{k}}^{2} / 3$
$\pi^{*}\left(2 d_{\text {bole }}\right)^{*}\left(1 / 2 d_{\mathrm{rw}}\right)^{2} / 3$
$t_{k}=$ Thickness of rootwad measured in direction parallel to trunk
$=4$ times the radius of the $\log \left(4 r_{k}\right.$ or
$\mathrm{w}_{\mathrm{k}}=$
Radius of rootwad

Buoyancy Calculations

Project:
Project No.:
Tucannon
Project Number

$\mathrm{d}_{\mathrm{rw3}}$		ft	Diameter of rootwad of log type 3 (from detail)
$\mathrm{V}_{\mathrm{LWMs} 3}$	7	ft^{3}	Volume of LWM3
$\mathrm{V}_{\mathrm{LWMs}}$	312	ft^{3}	Volume of LWM
$\gamma_{\text {wood }}$	33.0	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of logs
γ_{w}	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
$\mathrm{F}_{\mathrm{LWMs}}$	$-9,165$	lb	Eqn. 3

6. Lift Forces (F_{1})

C_{L}	0.45		Lift Coefficient
$A_{L W M}$	120	ft^{2}	Calc'd in Drag Forces
γ_{w}	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
U_{0}	6.5	ft / s	upstream velocity (from model)
g	32.2	$\mathrm{ft} / \mathrm{s}^{2}$	Unit weight of water
F_{L}	$-\mathbf{2 , 2 1 1}$	lb	Eqn. 4

$\begin{aligned} & \text { Analyst: } \text { ASD } \\ &\end{aligned}$
Latest Revision:
2/27/2023
$=2.5$ times the radius of the $\log \left(2.5 r_{k}\right.$ or $1.25 \mathrm{~d}_{\text {bole }}$) or $1 / 2 \mathrm{~d}_{\mathrm{rw}}$ specified

$F_{L}=-\frac{c_{L} * A_{L W M} * Y_{W} * U_{O}^{2}}{2 * g}$

$c_{L}=$ lift coefficient
$A_{\text {IWM }}=$ area of large woody material perpendicular to flow $u_{u}=$ upstream channel velocity at design event $g=a c c e l e r a t i o n ~ d u e ~ t o ~ g r a v i t y ~$

Comment: Lift forces neglected per Section 6.4.2 of BOR Risk Based Design Guidelines

Factor of Safety

$F O S_{b}=$	$\left(F_{\text {LMDd }}+F_{\text {boulders }}+F_{\text {soil }}+F_{\text {piles-v }}\right) /\left(F_{\text {LWMs }}+F_{L}\right)$	
$\mathrm{F}_{\text {LWMd }}$	lb	Assumed Zero
$\mathrm{F}_{\text {boulder }}$	lb	
$\mathrm{F}_{\text {soil }}$	18,668 lb	
$\mathrm{F}_{\text {piles-v }}$	lb	
$\mathrm{F}_{\text {LWMs }}$	$-9,165 \quad \mathrm{lb}$	
F_{L}	-2,211 lb	
$\mathrm{FOS}_{\text {b }}$	1.64	STABLE FOR BUOYANCY

Summary Comments:

Sliding Calculations

Project:
Project No.:

Tucannon
Project Number
Analyst:

Calculations Checked By:	
Latest Revision:	$\frac{A S D}{\text { ALJ }}$
H\#\#\#\#\#\#\#	

Analyst: ASD
Latest Revision: \#\#\#\#\#\#\#\#\#

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM sliding

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints.
2) The effect of soil in back of the structure is negligible
3) The structure will be submerged during the design event.
4) Channel velocity $\left(V_{c}\right)$ taken from hydraulic model.
5) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

$$
F O S_{\text {sliding }}=\frac{\left|F_{h d}+F_{f}+F_{\text {pthes }-h}+F_{\text {passive }}\right|}{F_{d}+F_{\text {hu }}+F_{i}}
$$

Equation 41

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Sliding Factor of Safety ($\mathrm{FOS}_{\text {sliding }}$) for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	$\mathrm{FOS}_{\text {stan; }}$	$\mathrm{FOS}_{\text {boxper }}$	$\left\|\begin{array}{c} \mathrm{FOS}_{\text {mateen }} \\ \mathrm{FOS} \text { cumantines } \end{array}\right\|$
High	High	100-jear	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25 -year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Drag Force (Fd)

Y_{u}	4.50	ft	Upstream water depth	
hdebris	6	ft	Debris height (incl. accumulation)	
wdebris	20	ft	Debris width (incl. accumulation)	
Debris Shape	Rectangle			
$\mathrm{A}_{\mathrm{L}} \mathrm{wM}$	120	ft^{2}	Wetted area of LWM	
$\gamma_{\text {water }}$	62.40	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water	
v_{c}	6.50	ft / s	Velocity from Model	
g	$\mathbf{3 2 . 2 0}$	$\mathrm{ft} / \mathrm{s}^{2}$	Acceleration due to gravity	
A_{b}	$\mathbf{1 2 0 . 0 0}$	ft^{2}	Debris area	
$\mathrm{w}_{\text {channel }}$	60	ft	Channel width	
C_{d}	1.50		NLWM Worst Case	
F_{d}	7369	lb	Eqn 19	

$F_{d}=\frac{C_{D} * A_{L W M} * \gamma_{w} * U_{c}^{2}}{2 * g}$ Equation 19
$F_{d}=$ drag force
$C_{d}=$ drag coefficient
$A_{\text {Iwm }}=$ area of wetted debris based on the upstream water surface
elevation projected normal to flow direction and the potential drift
accumulation
$\gamma_{w}=$ unit weight of water
$U_{c}=$ velocity in contracted section
$g=$ acceleration due to gravity

Cd can be assumed 0.9 when fully submerged, 1.5 when WSEL withii
$C_{d-\text { applied }}=\frac{C_{d}}{(1-B)^{2}}$

Sliding Calculations

Project: Tucannon
Project No.: Project Number

$$
\begin{aligned}
\text { Analyst: } & \begin{array}{l}
\text { ASD } \\
\text { Calculations Checked By: } \\
\text { Latest Revision: } \\
\text { ALJ } \\
\text { \#\#\#\#\#\#\#\# }
\end{array}
\end{aligned}
$$

3. Impact Force (F_{i})

$\mathrm{L}_{\text {debris }}$	40	ft	Length of debris member (Design)
$\mathrm{d}_{\text {boledebris }}$	1.5	ft	Bole diameter of debris member (Design)
$\mathrm{d}_{\text {rwdebris }}$	4	ft	Rootwad diameter of debris member (Design)
$\mathrm{V}_{\text {debris }}$	83	ft^{3}	Volume of debris
$\gamma_{\text {wood }}$	33	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of wood
$\mathrm{w}_{\text {debris }}$	2,747	lb	weight of debris
g	32.2	$\mathrm{ft} / \mathrm{s}^{2}$	Acceleration due to gravity
$\mathrm{V}_{\text {channel }}$	6.5	ft / s	Velocity from Model
$\Delta \mathrm{t}$	0.03	sec	Impact Interval (0.03 sec recommended)
C_{i}	0.8		Coefficient of importance (from Table 6)
C_{0}	0.8		Coefficient of orientation
C_{d}	0.875		Figure 11 (need water depth from model)
Degree of Screening or Sheltering Upstream	Limited upstream screening, flow path 20' wide		ASCE 7-05
C_{b}	0.6		ASCE 7-05
$\mathrm{R}_{\text {max }}$	0.8		Response ratio for impulsive loads
F_{i}	7,805	lb	Eqn 30

Equation 30

Assumption:
*Largest impact force would be generated by structure being struck by floating large key member. For impact calculation, assuming 18" diameter, 30' long member with rootwad impacts structure.
**See Section 6.3.3 of LWM RBDG (P. 44) for debris loading sizing.
|4. Friction Force (F_{t})

$\phi_{\text {bed }}$	0.72	radians	Calculated for streambed material (small cobble)
bed	0.87		Eqn 32
$\mathrm{F}_{\text {LWMd }}$		Ib	Buoyancy Calcs
$\mathrm{F}_{\text {boulder }}$		Ib	Buoyancy Calcs
$\mathrm{F}_{\text {soil }}$	18668	Ib	Buoyancy Calcs
$\mathrm{F}_{\text {piles-v }}$		Ib	Buoyancy Calcs
$\mathrm{F}_{\text {LWMs }}$	-9165	Ib	Buoyancy Calcs
F_{L}	-2211	Ib	Buoyancy Calcs
F_{b}	7,293	Ib	Eqn 17
F_{f}	-6,340	lb	Eqn 31

$$
\begin{aligned}
& F_{f}=-\mu_{\text {bed }} *\left(F_{b}-F_{\text {piles-v }}\right) \\
& F_{f}=\text { force due to frictional resistance } \\
& F_{0}-F_{\text {pivesv }}>0
\end{aligned}
$$

$$
\mu_{b e d}=\tan \emptyset
$$

Equation 32

$$
F_{b}=F_{L W M s}+F_{L W M d}+F_{L}+F_{\text {boulder }}+F_{\text {soil }}+F_{\text {piles-v }}
$$

Note:
*If buoyancy forces are less than vertical pile forces (Fb-Fpiles-v<0), then friction force $=\mathbf{0}$.

Sliding Calculations

Project:
Project No.:

Tucannon
Project Number

Analyst: \qquad Calculations Checked By: ALJ AL

5. Passive Forces ($\mathrm{F}_{\text {nassiva }}$)

$\phi_{\text {bank }}$	0.66	radians	Calculated for bank material (very course gravel)
K_{p}	4.20		Eqn 34
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
$\gamma_{\text {soil }}$	126	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of soil
$\gamma_{\text {sat }}$	141	$\mathrm{lb} / \mathrm{ft}^{3}$	Previously calculated for buoyancy calcs
$\mathrm{N}_{\text {logssub1 }}$	2		Number of log type 1 (from detail)
Orientation ${ }_{1}{ }^{\text {"* }}$	Perpendicular		Perpendicular or Parallel to flow
$\mathrm{L}_{\text {eb1 }}$	26.5	ft	Length of log type 1 (from detail)
$\mathrm{d}_{\text {bole1 }}$	1.5	ft	Diameter of log type 1 (from detail)
$\mathrm{D}_{\text {sub1 }}$	3	ft	Depth of submerged soil above log 1
$\mathrm{D}_{\text {dry1 }}$		ft	Depth of dry soil above log 1
$\sigma_{v 1}$	235	lb/ft ${ }^{2}$	
$\sigma_{\mathrm{v} 1} * \mathrm{~L}_{\text {eb } 1}{ }^{*} \gamma_{\text {soil }}$	18,668	Ib	
$\mathrm{N}_{\text {logssub2 }}$	1		Number of log type 2 (from detail)
Orientation ${ }_{2}{ }^{\text {"* }}$	Parallel		Perpendicular or Parallel to flow
$\mathrm{L}_{\text {eb2 }}$		ft	Length of log type 2 (from detail)
$\mathrm{d}_{\text {bole2 }}$	2	ft	Diameter of log type 2 (from detail)
$\mathrm{D}_{\text {sub2 }}$		ft	Depth of submerged soil above log 2
$\mathrm{D}_{\text {dry2 }}$		ft	Depth of dry soil above $\log 2$
$\sigma_{\mathrm{v} 2}$		$\mathrm{lb} / \mathrm{ft}^{2}$	
$\sigma_{\mathrm{v2}} * \mathrm{~L}_{\text {eb2 } 2} * \gamma_{\text {soil }}$		Ib	
$\mathrm{N}_{\text {logssub3 }}$	3		Number of log type 3(from detail)
Orientation ${ }_{3}{ }^{\text {** }}$	Perpendicular		Perpendicular or Parallel to flow
$\mathrm{L}_{\text {eb3 }}$		ft	Length of log type 3 (from detail)
$\mathrm{d}_{\text {bole3 }}$	1	ft	Diameter of log type 3 (from detail)
$\mathrm{D}_{\text {sub3 }}$		ft	Depth of submerged soil above $\log 3$
$\mathrm{D}_{\mathrm{dr} 3}$		ft	Depth of dry soil above $\log 3$
σ^{*}		$\mathrm{lb} / \mathrm{ft}^{2}$	
$\sigma_{\mathrm{v3}} * \mathrm{~L}_{\text {eb } 3}{ }^{*} \gamma_{\text {soil }}$		Ib	
$F_{\text {passive }}$	-39,238	Ib	Eqn 31

$F_{\text {passive }}=-0.5 * K_{p} * \sum_{i}^{n} \sigma_{v_{l}} * L_{e m_{l}} * d_{l o g_{i}}$	Equ
$K_{p}=\frac{1+\sin \phi}{1-\sin \phi}$	Equ
$\sigma_{v_{i}}=D_{\text {sub }}{ }^{*} *\left(\gamma_{\text {sat }}-\gamma_{\text {water }}\right)+D_{\text {dry }}{ }^{*} * \gamma_{\text {soll }}$	Equ
$=$ depth of submerged soil above log i	
$=$ depth of dry soil above $\log i$	
$=$ embedded length of $\log i$	
= diameter of $\log i$	

Sliding Calculations

Project:
Project No.:

Tucannon
Project Number
\(\begin{aligned} Analyst: \& \begin{array}{l}ASD

Calculations Checked By:

Latest Revision:\end{array}\)| ALJ |
| :--- |
| $\# \# \# \# \# \# \# \#$ |\end{aligned}

$N_{\text {piex }}=$ number of piles
$L_{\text {pil }}=$ length of pile embedded below potential scour depth
$\gamma_{e}=\gamma_{s}-\gamma_{w} \quad$ effective unit weight of soil Equation 37 $\gamma_{3}=d r y$ unit weight of the soil
$\gamma_{w}=$ unit weight of the soil
$d_{\text {pis }}=$ diameter of the pile
$h_{\text {jaod }}=$ height above the potential scour depth the load is applied

$$
K_{p}=\frac{1+\sin \phi}{1-\sin \phi}
$$

Equation 38
'Top 2' of pile embedment disregarded for calculation to account for vortex shedding.
${ }^{* *}$ Analysis also assumes that the resultant force is located at half of the flow depth on the upstream side of the LWM structure to produce a conservative moment on the pile.

Factor of Safety

$\mathrm{FOS}_{\text {sliding }}=$				
F_{d}	7,369	$\left.F_{h d}+F_{f}+F_{\text {piles-h }}+F_{\text {passive }}\right) /\left(F_{d}+F_{h u}+F_{i}\right)$		
$\mathrm{F}_{\text {hu }}$				
$\mathrm{F}_{\text {hd }}$	lb			
F_{i}	7,805	lb		
F_{f}	$-6,340$	lb		
$\mathrm{F}_{\text {passive }}$	$-39,238$	lb		
$\mathrm{F}_{\text {piles-h }}$	$-8,359$	lb		
FOS $_{\text {sliding }}$	3.55	lb		

Summary Comments:

Rotation Calculations

Project:
Tucannon
Project Number

Analyst:	ASD Calculations Checked By: Latest Revision:$\frac{\text { ALJ }}{\# \# \# \# \# \# \# \# \#}$

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM structure horizontal rotation.

Assumptions:

1) The LWM structue behaves as a single structure under the design load.
2) The effect of soil in back of the structure is negligible.
3) The structure will be submerged during the design event
4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells that are automatically updated are this color)
Output (Cells that are automatically updated with previously calculated values are this color)

FBD and Equations:

$$
F O S_{\text {rolation }}=\frac{\text { MA Rratation }}{M D_{\text {ratartan }}} \quad \quad \text { Equation } 45
$$

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Rotation Factor of Safety (FOS rotation) for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".
Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS $_{\text {stany }}$	FOS $_{\text {bosyney }}$	FOS $_{\text {reamen }}$ FOS $_{\text {everumen }}$
High	High	100 -year	1.75	2.0	1.75
High	Moderate	50 -year	1.5	1.75	1.5
High	Low	25 -year	1.5	1.75	1.5
Low	High	100 -year	1.75	2.0	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10 -year	1.25	1.5	1.25

1. Resistance to Rotation (MR rotation and $M D_{\text {rotation }}$)

Rotation Calculations

Project:
Project Number: | |

Analyst: ASD
Calculations Checked By: ALJ Latest Revision: \#\#\#\#\#\#\#\#\#

Overturning Calculations

Project:	Tucannon
Project Number:	Project Number

Latest Revision: \qquad

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against vertical overturning.

Assumptions:

1) The LWM structure behaves as a single structure under the design load.
2) The effect of soil in back of the structure is negligible.
3) The structure will be submerged during the design event
4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)

Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

Equation 49

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Overturn Factor of Safety ($\mathrm{FOS}_{\text {overturn }}$) for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".

1. Resistance to Overturn (MR rotation and $M D_{\text {rotation }}$)

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS $_{\text {stans }}$	FOS $_{\text {boxpency }}$	FOS $_{\text {nowen }}$ FOS $_{\text {ewramna }}$
High	High	100 -year	1.75	2.0	1.75
High	Moderate	50 -year	1.5	1.75	1.5
High	Low	25 -year	1.5	1.75	1.5
Low	High	100 -year	1.75	2.0	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10 -year	1.25	1.5	1.25

Driving:

F_{i}	7,805	Ib	Impact Forces (Calc'd in Sliding)
F_{d}	7,369	Ib	Drag Forces (Calc'd in Sliding)
$\mathrm{F}_{\text {hu }}$		Ib	Upstream Hydrostatic Forces (Calc'd in Sliding)
F_{L}	$-2,211$	Ib	Lift Forces (Assumed Zero in Buoyancy Calcs)
Y_{u}	4.5	ft	Upstream water elevation from model
$\mathrm{d}_{\mathrm{ubury}}$		ft	Depth at upstream side of structure from channel bottom to point of rotation measured perp to flow
L_{s}		ft	Length of structure parallel to flow
MD $_{\text {overturn }}$	$\mathbf{5 1 , 7 0 4}$	$\mathrm{lb} \mathrm{Ift}^{\mathrm{ft}}$	Eqn 46

Resisting:
Resisting:

$F_{\text {hd }}$		Ib	Downstream Hydrostatic Forces (Calc'd in Sliding)
$\mathrm{F}_{\text {passive }}$	$-39,238$	Ib	Passive Forces (Calc'd in Sliding)
F_{b}	7,293	Ib	Buoyancy Forces (Calc'd in Sliding)
$\mathrm{F}_{\text {pile-v }}$	$-8,359$	Ib	Lateral Resistance from Piles (Calc'd in Sliding)
Y_{d}	4.5	ft	Downstream water elevation
$\mathrm{d}_{\text {dbury }}$	4.5	ft	Depth at downstream side of structure from channel bottom to point of rotation measured perp to flow
$\mathrm{N}_{\text {piles }}$	2		Number of Piles (Design)
$\mathrm{L}_{\text {pvi }}$	35	ft	Distance from pile to the point of rotation measured parallel to flow.
$\mathrm{F}_{\text {pile-vi }}$		Ib	Eqn 48
$\mathrm{MR}_{\text {overturn }}$	$\mathbf{1 7 6 , 5 7 0}$	lb*ft	Eqn 47

Factor of Safety

FOS $_{\text {overturnon }}=M R_{\text {overturn }} / M D_{\text {overturn }}$			
$\mathrm{MD}_{\text {overturn }}$	$51,704 \quad \mathrm{lb}$		
$\mathrm{MR}_{\text {overturn }}$	$176,570 \quad \mathrm{lb}$		
FOS $_{\text {overturn }}$	$\mathbf{3 . 4 2}$	STABLE FOR OVERTURN	

$$
M D_{\text {overturn }}=F_{i} *\left(Y_{u}+d_{\text {bury }}\right)+F_{d} *\left(\frac{Y_{u}}{2}+d_{\text {bury }}\right)+F_{\text {hu }} *\left(\frac{Y_{u}}{3}+d u_{\text {bury }}\right)+\left|F_{L}\right| * L_{s}
$$

Equation 46

Overturning Calculations

Project: Project Number:	Tucannon Project Number
	Summary Comments:

Analyst:	ASD
Calculations Checked By:	
Latest Revision:	ALJ $2 / 27 / 2023$

Factor of Safety Summary

Project:

Tucannon
Project Number

Analyst:	ASD
Calculations Checked By:	
Latest Revision:	ALJ $2 / 27 / 2023$

Spreadsheet Description

Purpose: The spreadsheet below summarizes the factors of safety for the LWD structure.
Assumptions:

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this

Tables and Equations:

$$
\begin{aligned}
& F O S_{b}=\frac{F_{\text {LWM M }}+F_{\text {honiders }}+F_{\text {soul }}+F_{\text {pules }}}{\left|F_{\text {CWM }}+F_{L}\right|} \\
& F O S_{b}=\text { buoyancy factor of safety } \\
& F O S_{\text {sliding }}=\frac{\left|F_{h d}+F_{f}+F_{p l t e s-h}+F_{\text {passtive }}\right|}{F_{d}+F_{h u}+F_{i}} \\
& F O S_{\text {rotatien }}=\frac{\text { Nen ratatioa }}{\text { MD } D_{\text {rararlan }}} \\
& F O S_{\text {overtirn }}=\frac{A+\sum_{\text {avertura }}}{M D_{\text {everturn }}} \\
& F O S_{D}=\text { buoyancy factor of safety } \\
& F O S_{\text {sididing }}=\frac{\left|F_{h d}+F_{f}+F_{p l t e s-h+}+F_{\text {passive }}\right|}{F_{d}+F_{h u}+F_{i}} \\
& F O S_{\text {rotation }}=\frac{\text { NA } \|_{\text {ratarioa }}}{\text { ND, }}
\end{aligned}
$$

Equation 18

Equation 41

Equation 45

Equation 49

1. Factors of Safety Summary

Project Public Safety Risk	High
Project Property Damage Risk	Low

Safety Factors		Minimum Recommended Safety Factor	Calculated Safety Factor	Result
Buoyancy	FOS $_{\mathrm{b}}$	1.50	1.64	OK!
Sliding	FOS $_{\text {sliding }}$	1.25	3.55	OK!
Rotation	FOS $_{\text {rotation }}$	1.25	2.43	OK!
Overturn	FOS $_{\text {overturn }}$	1.25	3.42	OK!

Summary Comments:

Buoyancy Calculations

Project:
Project No.: Project Number

> Analyst:
> Calculations Checked By: ALJ
> Latest Revision:

Spreadsheet Description

- The spreadsheet below is used to calculate the Factor of Safety against Buoyant uplift of the LWM

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints
2) The LWM structure will be submerged during the design event.
3) Negative buoyancy is uplift, positive numbers equals downward.
4) Ballast material remains intact and is not scoured out.
5) The uplift due to racking material is evenly dividing among all layers.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Input (Cells requiring input from a dropdown list) Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:


```
FOS施 = buoyancy factor of safety
```

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design buoyancy factor of safety $\left(\mathrm{FOS}_{\mathrm{b}}\right)$ for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	$\mathrm{FOS}_{\text {atamg }}$	FOS ${ }_{\text {bospen }}$	$\begin{aligned} & \mathrm{FOS}_{\text {netera }} \\ & \mathrm{FOS}_{\text {overaming }} \end{aligned}$
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Large Wood Material Force - Dry ($\mathrm{F}_{\text {wmad }}$)

$$
F_{L W M d}=V_{L W M d} * \gamma_{w o o d}
$$

Equation 3
$V_{L \text { LWMy }}=$ volume of dry large wood material
Comment: Assumed to be zero because structure assumed to be submerged during design event.

2. Boulder Ballast Force ($F_{\text {boulder }}$)

$\mathrm{N}_{\text {bouldersub }}$			Number of submerged boulders (from design)	$F_{\text {boulder }}=F_{\text {bouldersub }}+F_{\text {boulderdry }}$	Equation 5
$\mathrm{d}_{\text {bouldersub }}$	2.5	ft	Effective diameter of submerged boulder (ft, from spec)	$\begin{aligned} & F_{\text {bouldersub }}=N_{\text {boulder sub }} * \frac{\pi}{*} * d_{\text {bouldersub }}^{3} *\left(\gamma_{\text {boulder }}-\gamma_{w}\right) \\ & N_{\text {bouldersub }}=\text { number of submerged boulders } \\ & d_{\text {bouldersub }}=\text { effective diameter of submerged boulders } \\ & \gamma_{\text {boulder }}=\text { unit weight of boulders } \end{aligned}$	Equation 6
$\gamma_{\text {boulder }}$	146	$\mathrm{lb} / \mathrm{ft}^{3}$	unit weight of boulders (Table 5)		
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	unit weight of water		
$\mathrm{F}_{\text {bouldersub }}$		lb	Eqn. 6	$F_{\text {boulderdry }}=N_{\text {boulderdry }} * \frac{\pi}{6} * d_{\text {boulderdry }}^{3} * \gamma_{\text {boulder }}$	Equation 7
$\mathrm{N}_{\text {boulderdry }}$			Number of dry boulders (from detail)	$N_{\text {boulderdry }}=$ number of unsubmerged boulders $d_{\text {boulderdry }}=$ effective diameter of unsubmerged boulders	
$\mathrm{d}_{\text {boulderdry }}$	2.5	ft	Effective diameter of dry boulder (ft, from spec)		
$\mathrm{F}_{\text {boulderdry }}$		Ib	Eqn. 7		
$F_{\text {boulder }}$		lb	Eqn. 5		

Comment: The intent is design without the use of boulders so it is assumed no boulders are used.

Buoyancy Calculations

Project:
Project No.:

Tucannon
Project Number
Analyst:
ASD
Calculations Checked By: \qquad 2/28/2023
Latest Revision:

3. Soil Backfill Force ($\mathrm{F}_{\text {soil }}$)

$\mathrm{N}_{\text {logssub1 }}$	1		Number of Type 1 buried logs (from detail)
Leb1	20	ft	Average embedded length of Type 1 logs (from detail)
$\mathrm{d}_{\text {bole1 }}$	1.25	ft	Average diameter of Type 1 logs (from detail)
$\mathrm{h}_{\text {soilsub1 }}$		ft	Average height of submerged soil above Type 1 log (from detail)
$\mathrm{V}_{\text {soilsub1 }}$		ft^{3}	Volume of submerged soil above Type 1 log (from detail)
$\mathrm{h}_{\text {soildry1 }}$		ft	Average height of dry soil above Type 1 log (from detail)
$\mathrm{V}_{\text {soildry1 }}$		ft^{3}	Volume of dry soil above Type 1 log (from detail)
$\mathrm{N}_{\text {logssub2 }}$	2		Number of Type 2 buried logs (from detail)
$\mathrm{L}_{\mathrm{eb} 2}$	27	ft	Average embedded length of Type 2 logs (from detail)
$\mathrm{d}_{\text {bole2 }}$	1.75	ft	Average diameter of Type 2 logs (from detail)
$\mathrm{h}_{\text {soilsub2 }}$	3	ft	Average height of submerged soil above Type 2 log (from detail)
$V_{\text {soilsub2 }}$	284	ft^{3}	Volume of submerged soil above Type 2 log (from detail)
$\mathrm{h}_{\text {soildry2 }}$		ft	Average height of dry soil above Type 2 log (from detail)
$V_{\text {soildry2 }}$		ft^{3}	Volume of dry soil above Type 2 log (from detail)
$\mathrm{N}_{\text {logssub3 }}$			Number of Type 3 buried logs (from detail)
Leb3	25	ft	Average embedded length of Type 3 logs (from detail)
$\mathrm{d}_{\text {bole3 }}$	1.75	ft	Average diameter of Type 3 logs (from detail)
$\mathrm{h}_{\text {soilsub3 }}$		ft	Average height of submerged soil above Type 3 log (from detail)
$V_{\text {soilsub3 }}$		ft^{3}	Volume of submerged soil above Type 3 log (from detail)
$h_{\text {soildry3 }}$		ft	Average height of dry soil above Type 3 log (from detail)
$V_{\text {soildry3 }}$		ft^{3}	Volume of dry soil above Type 3 log (from detail)
$\gamma_{\text {soil }}$	131	$\mathrm{lb} / \mathrm{ft}^{3}$	Specific Gravity of bank/backfill material (Table 5)
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
SG ${ }_{\text {rock }}$	2.64		Specific Gravity of Rock (Using unit weight of bedrock from Table 5)
e	0.26		Eqn. 14
$\gamma_{\text {sat }}$	144	$\mathrm{lb} / \mathrm{ft}^{3}$	Eqn. 13
γ soil	81.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Eqn. 12
$F_{\text {soil }}$	23,071	Ib	Eqn. 8

$F_{\text {soil }}=\sum_{i}^{n} V_{\text {soilsub }_{i}} * \gamma_{\text {soil }_{\prime}^{\prime}}^{\prime}+V_{\text {soildry }_{i}} * \gamma_{\text {soll }}$
Equation 8
$V_{\text {soilsub }_{i}}=L_{\text {eb }_{i}} d_{\text {bole }_{i}} h_{\text {soilsub }_{i}}$
$V_{\text {soilsubi }}=$ volume of submerged soil above $\log i$
$L_{e b i}=$ embedded length of $\log i$
$d_{\text {bolei }}=$ bole diameter of log i
$h_{\text {soilsubi }}=$ height of submerged soil above log i
$V_{\text {soildry }_{i}}=L_{e b_{i}} d_{\text {bole }_{i}} h_{\text {soildry }}^{i}$
Equation 10
$V_{\text {soildryi }}=$ volume of dry soil above log i
$h_{\text {soildryi }}=$ height of dry soil above $\log i$

$$
\gamma_{\text {soil }}=\left(99.2+18.6 * \log \left(d_{50}\right)\right)
$$

Equation 11
$d_{50}=$ median grain size in millimeters
$\gamma_{\text {soil }}^{\prime}=\gamma_{\text {sat }}-\gamma_{w}$
Equation 12
$\gamma_{\text {sat }}=\frac{\left(S G_{\text {rock }}+e\right) * \gamma_{w}}{1+e} \quad$ Equation 13
$e=\frac{s G_{\text {rock }} * \gamma_{w}}{\gamma_{\text {soil }}}-1$
Equation 14

Buoyancy Calculations

Project:
Project No.:

Tucannon
Project Number

4. Pile Skin Friction

$\mathrm{N}_{\text {piles }}$			Number of piles (Design)
$\mathrm{d}_{\text {piles }}$	0.83	ft	Diameter of piles (Design)
$L_{\text {piles }}$	8	ft	Embedded length of piles (Design)
k_{s}	1		Coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density)
Placement Method	Excavated		Method of pile placement
Placement Multiplier	0.25		See RBDG (P. 52)
Pile Placement Location	Bed		Bed or Bank
soil	0.72	rad	Internal angle of friction of soils (Table 5)
$\gamma_{\text {soil }}$	137	$\mathrm{lb} / \mathrm{ft}^{3}$	Specific Weight of Soil
e	0.20		Eqn. 14
$\gamma_{\text {sat }}$	148	$\mathrm{lb} / \mathrm{ft}^{3}$	Eqn. 13
$\gamma_{\text {water }}$	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
	681	$\mathrm{lb} / \mathrm{ft}^{2}$	Eqn 16
$\gamma_{\text {wood }}$	33	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of wood
$F_{\text {piles-v }}$		Ib	Eqn 15

$F_{\text {piles-v }}=N_{\text {piles }} * \pi * d_{\text {piles }} * L_{\text {piles }}\left(k_{s} * \tan \frac{2}{3} \emptyset * \sigma^{\prime}+\frac{d_{\text {pties }}}{4} *\left(\gamma_{\text {wood }}-\gamma_{w}\right)\right)$
Equation 15
$N_{\text {piles }}=$ number of piles
$d_{\text {piles }}=$ diameter of piles
$L_{\text {pres }}=$ embedded length of piles
$k_{s}=$ coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density)
$\phi=$ internal angle of friction of soils
$\sigma^{\prime}=L_{\text {piles }} *\left(\gamma_{\text {sat }}-\gamma_{w}\right) \quad$ Equation 16

Assumptions:
${ }^{*} k_{\mathrm{s}}=1$
** This calculation is based on the assumption that piles are driven or vibrated into place. If piles are drilled or excavated, the associated coefficicient of lateral earth pressures shall be approx. 50% and 25% of the driven value, respectively.
*** For use in buoyancy calculations, piles must be mechanically fastened.
**** Top 2' of pile embedment disregarded for calculation to account for vortex shedding.
5. Large Wood Material Force - Submerged ($F_{\text {wMs }}$)
$F_{L W M A}=V_{L W M s} *\left(\gamma_{\text {wood }}-\gamma_{w}\right)$
$V_{\text {Lwns }}=$ volume of submerged large wood material
$\gamma_{\text {wood }}=$ unit weight of wood
$\gamma_{w}=$ unit weight of water

$\mathrm{N}_{\text {logssub1 }}$	1		Number of log type 1 (from detail)
$\mathrm{L}_{\text {log1 }}$	20	ft	Length of log type 1 (from detail)
$\mathrm{d}_{\text {bole1 }}$	1.25	ft	Diameter of log type 1 (from detail)
$\mathrm{d}_{\text {rw1 }}$		ft^{2}	Diameter of rootwad of log type 1 (from detail)
$\mathrm{V}_{\text {LWMs1 }}$	25	ft^{3}	Volume of LWM1
$\mathrm{N}_{\text {logssub2 }}$	2		Number of log type 2 (from detail)
$\mathrm{L}_{\text {eb2 }}$	40	ft	Length of log type 2 (from detail)
$\mathrm{d}_{\text {bole2 }}$	1.75	ft	Diameter of log type 2 (from detail)
$\mathrm{d}_{\text {rw2 }}$	4.38	ft	Diameter of rootwad of log type 2 (from detail)
$\mathrm{V}_{\text {LWMs2 }}$	227	ft^{3}	Volume of LWM2
$\mathrm{N}_{\text {logssub3 }}$			Number of log type 3 (from detail)
$\mathrm{L}_{\text {eb3 }}$	40	ft^{2}	Length of log type 3 (from detail)
$\mathrm{d}_{\text {bole3 }}$	1.75	ft	Diameter of log type 3 (from detail)

Volume of Rootwad
National Large Wood Manual. 2016
Equation 6-4 (p. 6-38)
$\mathrm{V}_{\mathrm{rw}}=\pi^{*} \mathrm{t}_{\mathrm{k}}{ }^{*} \mathrm{w}_{\mathrm{k}}^{2} / 3$
$\pi^{*}\left(2 \mathrm{~d}_{\text {bole }}\right)^{*}\left(1 / 2 \mathrm{~d}_{\mathrm{rw}}\right)^{2} / 3$
$t_{k}=$ Thickness of rootwad measured in direction parallel to trunk
$=4$ times the radius of the $\log \left(4 r_{k}\right.$ or
$\mathrm{w}_{\mathrm{k}}=$
Radius of rootwad

Buoyancy Calculations

Project:
Project No.:
Tucannon
Project Number

$\mathrm{d}_{\mathrm{rw3}}$		ft	Diameter of rootwad of log type 3 (from detail)
$\mathrm{V}_{\mathrm{LWMs} 3}$		ft^{3}	Volume of LWM3
$\mathrm{V}_{\mathrm{LWMs}}$	252	ft^{3}	Volume of LWM
$\gamma_{\text {wood }}$	33.0	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of logs
γ_{w}	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
$\mathrm{F}_{\mathrm{LWMs}}$	$-7,410$	lb	Eqn. 3

6. Lift Forces (F_{1})

C_{L}	0.45		Lift Coefficient
$A_{L W M}$	75	ft^{2}	Calc'd in Drag Forces
γ_{w}	62.4	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water
U_{0}	6.5	ft / s	upstream velocity (from model)
g	32.2	$\mathrm{ft} / \mathrm{s}^{2}$	Unit weight of water
F_{L}	$-1,382$	lb	Eqn. 4

$\begin{aligned} \text { Analyst: } & \text { ASD } \\ \text { Calculations Checked By: } & \text { ALJ }\end{aligned}$
\qquad
Latest Revision:

$$
2 / 28 / 2023
$$

$=2.5$ times the radius of the $\log \left(2.5 r_{k}\right.$ or $1.25 \mathrm{~d}_{\text {bole }}$) or $1 / 2 \mathrm{~d}_{\mathrm{rw}}$ specified

$F_{L}=-\frac{c_{L} * A_{L W M} * Y_{W} * U_{O}^{2}}{2 * g}$

$c_{L}=$ lift coefficient
$A_{L W M}=$ area of large woody material perpendicular to flow $u_{u}=$ upstream channel velocity at design event $g=a c c e l e r a t i o n ~ d u e ~ t o ~ g r a v i t y ~$

Comment: Lift forces neglected per Section 6.4.2 of BOR Risk Based Design Guidelines

Factor of Safety

$\mathrm{FOS}_{b}=$	$\left(F_{\text {LMDd }}+F_{\text {boulders }}+F_{\text {soil }}+F_{\text {piles-v }}\right) /\left(F_{\text {LWMs }}+F_{L}\right)$	
$\mathrm{F}_{\text {LWMd }}$	lb	Assumed Zero
$\mathrm{F}_{\text {boulder }}$	lb	
$\mathrm{F}_{\text {soil }}$	23,071 lb	
$\mathrm{F}_{\text {piles-v }}$	lb	
$\mathrm{F}_{\text {LWMs }}$	-7,410 lb	
F_{L}	-1,382 lb	
$\mathrm{FOS}_{\text {b }}$	2.62	STABLE FOR BUOYANCY

Summary Comments:

Sliding Calculations

Project:
Project No.:

Tucannon
Project Number

Analyst:	ASD Calculations Checked By: Latest Revision:$\frac{\text { ALJ }}{\text { \#\#\#\#\#\#\#\# }}$

Analyst: ASD
Latest Revision: \#\#\#\#\#\#\#\#\#

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM sliding

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints.
2) The effect of soil in back of the structure is negligible
3) The structure will be submerged during the design event.
4) Channel velocity $\left(V_{c}\right)$ taken from hydraulic model.
5) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

$$
F O S_{\text {sliding }}=\frac{\left|F_{\text {ha }}+F_{f}+F_{\text {plless }}-\Lambda+F_{\text {passivel }}\right|}{F_{d}+F_{\text {hu }}+F_{h}} \quad \quad \quad \text { Equation } 41
$$

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Sliding Factor of Safety (FOS $_{\text {sliding }}$) for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	$\mathrm{FOS}_{\text {tuns }}$	$\mathrm{FOS}_{\text {baxame }}$	$\left\|\begin{array}{c} \mathrm{FOS}_{\text {maceen }} \\ \mathrm{FOS} \text { oumminien } \end{array}\right\|$
High	High	100-jear	1.75	20	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25 -year	1.5	1.75	1.5
Low	High	100-year	1.75	20	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Drag Force (F_{d})

Y_{u}	3.50	ft	Upstream water depth	
hdebris	5	ft	Debris height (incl. accumulation)	
wdebris	15	ft	Debris width (incl. accumulation)	
Debris Shape	Rectangle			
$\mathrm{A}_{\mathrm{L} \text { wM }}$	75	ft^{2}	Wetted area of LWM	
$\gamma_{\text {water }}$	62.40	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of water	
v_{c}	6.50	$\mathrm{ft} / \mathrm{s}^{2}$	Velocity from Model	
g	32.20	$\mathrm{ft} / \mathrm{s}^{2}$	Acceleration due to gravity	
A_{b}	75.00	ft^{2}	Debris area	
$\mathrm{w}_{\text {channel }}$	60	ft	Channel width	
c_{d}	1.50		NLWM Worst Case	
F_{d}				

$$
\begin{aligned}
F_{d}=\frac{C_{D} * A_{L W M} * \gamma_{w} * U_{c}^{2}}{2 * g}
\end{aligned} \quad \text { Equation } 19 .
$$

Cd can be assumed 0.9 when fully submerged, 1.5 when WSEL withii

$$
C_{d-a p p l i e d}=\frac{C_{d}}{(1-B)^{2}}
$$

Sliding Calculations

Project: Tucannon
Project No.: Project Number

$$
\begin{aligned}
\text { Analyst: } & \begin{array}{l}
\text { ASD } \\
\text { Calculations Checked By: } \\
\text { Latest Revision: } \\
\text { ALJ } \\
\text { \#\#\#\#\#\#\#\# }
\end{array}
\end{aligned}
$$

3. Impact Force (F_{i})

$\mathrm{L}_{\text {debris }}$	40	ft	Length of debris member (Design)
$\mathrm{d}_{\text {boledebris }}$	1.5	ft	Bole diameter of debris member (Design)
$\mathrm{d}_{\text {rwdebris }}$	3	ft	Rootwad diameter of debris member (Design)
$\mathrm{V}_{\text {debris }}$	78	ft^{3}	Volume of debris
$\gamma_{\text {wood }}$	33	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of wood
$\mathrm{w}_{\text {debris }}$	2,566	Ib	weight of debris
g	32.2	$\mathrm{ft} / \mathrm{s}^{2}$	Acceleration due to gravity
$\mathrm{V}_{\text {channel }}$	6.5	ft / s	Velocity from Model
$\Delta \mathrm{t}$	0.03	sec	Impact Interval (0.03 sec recommended)
Ci_{i}	0.8		Coefficient of importance (from Table 6)
Co	0.8		Coefficient of orientation
C_{d}	0.625		Figure 11 (need water depth from model)
Degree of Screening or Sheltering Upstream	Limited upstream screening, flow path 20^{\prime} wide		ASCE 7-05
C_{b}	0.6		ASCE 7-05
$\mathrm{R}_{\text {max }}$	0.8		Response ratio for impulsive loads
Fi	5,207	1 lb	Eqn 30

$$
F_{i}=\frac{\pi w_{\text {debris }}{ }^{*} V_{\text {channel }}{ }^{*} C_{i^{*}} C_{o^{*}} C_{d^{*} * C_{b} * R_{\text {max }}}^{2 *}}{2 * \Delta t}
$$

Equation 30

$$
\begin{gathered}
F_{i}=\text { impact force } \\
w_{\text {debris }}=\text { weight of debris } \\
g=\text { acceleration constant due to gravity } \\
V_{\text {channel }}=\text { water velocity in channel } \\
\Delta t=\text { time from initial velocity to zero velocity }
\end{gathered}
$$

$$
C_{i}=\text { coefficient of importance }
$$

$$
C_{o}=\text { coefficient of orientation }=0.8
$$

$$
C_{d}=\text { coefficient of depth }
$$

$$
C_{b}=\text { coefficient of blockage }
$$

$R_{\text {max }}=$ response ratio for impulsive loads $=0.8$

Assumption:
*Largest impact force would be generated by structure being struck by floating large key member. For impact calculation, assuming $\mathbf{1 8 " ~}^{\prime \prime}$ diameter, 30 ' long member with rootwad impacts structure.
**See Section 6.3.3 of LWM RBDG (P. 44) for debris loading sizing.
|4. Friction Force (F_{t})

$\Phi_{\text {bed }}$	0.72	radians	Calculated for streambed material (small cobble)
$\mu_{\text {bed }}$	0.87		Eqn 32
$F_{\text {LWMd }}$		Ib	Buoyancy Calcs
$F_{\text {boulder }}$		Ib	Buoyancy Calcs
$F_{\text {soil }}$	23071	Ib	Buoyancy Calcs
$F_{\text {pies-v }}$		Ib	Buoyancy Calcs
$F_{\text {LWM }}$	-7410	Ib	Buoyancy Calcs
$F_{\text {L }}$	-1382	Ib	Buoyancy Calcs
$F_{\text {b }}$	14,279	Ib	Eqn 17
F_{f}	$-12,413$	Ib	Eqn 31
Neter			

$$
\begin{aligned}
& \quad F_{f}=-\mu_{\text {bed }} *\left(F_{b}-F_{\text {piles-v }}\right) \\
& F_{f}=\text { force due to frictional resistance } \\
& F_{0}-F_{\text {pioserv }}>0
\end{aligned}
$$

Equation 31

$$
\mu_{b e d}=\tan \emptyset
$$

Equation 32

$$
F_{b}=F_{L W M s}+F_{L W M d}+F_{L}+F_{\text {boulder }}+F_{\text {soil }}+F_{\text {piles-v }}
$$

Note:
*If buoyancy forces are less than vertical pile forces (Fb-Fpiles-v<0), then friction force $=\mathbf{0}$.

Sliding Calculations

Project:
Tucannon
Project No.:

Project Number

Analyst: \qquad ALJ AL

Latest Revision: \#\#\#\#\#\#\#\#\#

5. Passive Forces ($\mathrm{F}_{\text {nassiva }}$)

$\phi_{\text {bank }}$	0.70	radians	Calculated for bank material (very course gravel)
K_{p}	4.60		Eqn 34
$\gamma_{\text {water }}$	62.4	$1 \mathrm{l} / \mathrm{ft}{ }^{3}$	Unit weight of water
$\gamma_{\text {soil }}$	131	$\mathrm{lb} / \mathrm{ft}^{3}$	Unit weight of soil
$\gamma_{\text {sat }}$	144	$1 \mathrm{l} / \mathrm{ft}^{3}$	Previously calculated for buoyancy calcs
$\mathrm{N}_{\text {logssub1 }}$	1		Number of log type 1 (from detail)
Orientation ${ }_{1}{ }^{*}$	Perpendicular		Perpendicular or Parallel to flow
$\mathrm{L}_{\mathrm{eb} 1}$	20	ft	Length of log type 1 (from detail)
$\mathrm{d}_{\text {bole1 }}$	1.25	ft	Diameter of log type 1 (from detail)
$\mathrm{D}_{\text {sub1 }}$		ft	Depth of submerged soil above log 1
$\mathrm{D}_{\text {dry }}$		ft	Depth of dry soil above log 1
$\sigma_{v 1}$		1b/ft ${ }^{2}$	
$\sigma_{\mathrm{v} 1} * \mathrm{~L}_{\text {eb } 1}{ }^{*} \gamma_{\text {soil }}$		Ib	
$\mathrm{N}_{\text {logssub2 }}$	2		Number of log type 2 (from detail)
Orientation ${ }^{\text {*** }}$	Perpendicular		Perpendicular or Parallel to flow
$\mathrm{L}_{\mathrm{eb} 2}$	27	ft	Length of log type 2 (from detail)
$\mathrm{d}_{\text {bole2 }}$	1.75	ft	Diameter of log type 2 (from detail)
$\mathrm{D}_{\text {sub2 }}$	3	ft	Depth of submerged soil above $\log 2$
$\mathrm{D}_{\mathrm{dr} \text { 2 }}$		ft	Depth of dry soil above $\log 2$
$\sigma_{\mathrm{v} 2}$	244	Ib/ft ${ }^{2}$	
$\sigma_{\mathrm{v} 2} * \mathrm{~L}_{\text {eb2 }} * \gamma_{\text {soil }}$	23,071	Ib	
$\mathrm{N}_{\text {logssub3 }}$			Number of log type 3(from detail)
Orientation ${ }^{\text {"* }}$	Parallel		Perpendicular or Parallel to flow
$\mathrm{L}_{\text {eb3 }}$	40	ft	Length of log type 3 (from detail)
$\mathrm{d}_{\text {bole3 }}$	1.75	ft	Diameter of log type 3 (from detail)
$\mathrm{D}_{\text {sub3 }}$		ft	Depth of submerged soil above log 3
$\mathrm{D}_{\mathrm{dr} 3}$		ft	Depth of dry soil above $\log 3$
$\sigma_{v 3}$		lb/ft ${ }^{2}$	
$\sigma_{\text {v3 }} * L_{\text {eb3 }}{ }^{*} \gamma_{\text {soil }}$		Ib	
$F_{\text {passive }}$	-53,050	Ib	Eqn 31

4.59890993
$F_{\text {passive }}=-0.5 * K_{p} * \sum_{i}^{n} \sigma_{v_{l}} * L_{e m l} * d_{l o g}$
$K_{p}=\frac{1+\sin \phi}{1-\sin \phi} \quad$ Equ
$\sigma_{v_{i}}=D_{\text {sub }_{i}} *\left(\gamma_{\text {sut }}-\gamma_{\text {water }}\right)+D_{\text {dry }_{i}} * \gamma_{\text {soll }} \quad$ Equ
$D_{\text {sud }}=$ depth of submerged soil above $\log i$
$D_{\text {ary }}=$ depth of dry soil above $\log i$
$L_{\text {eni }}=$ embedded length of $\log i$
$d_{\text {log }}=$ diameter of $\log i$

Sliding Calculations

Project:
Project No.:

Tucannon
Project Number
\(\begin{aligned} Analyst: \& \begin{array}{l}ASD

Calculations Checked By:

Latest Revision:\end{array}\)| ALJ |
| :--- |
| $\# \# \# \# \# \# \# \#$ |\end{aligned}

$N_{\text {pievs }}=$ number of piles
$L_{\text {pis }}=$ length of pile embedded below potential scour depth
$\gamma_{e}=\gamma_{s}-\gamma_{w} \quad$ effective unit weight of soil Equation 37 $\gamma_{2}=d r y$ unit weight of the soil
$\gamma_{w}=$ unit weight of the soil
$d_{\text {pis }}=$ diameter of the pile
$h_{\text {jaod }}=$ height above the potential scour depth the load is applied

$$
K_{p}=\frac{1+\sin \phi}{1-\sin \phi}
$$

* Top 2' of pile embedment disregarded for calculation to account for vortex shedding.
${ }^{* *}$ Analysis also assumes that the resultant force is located at half of the flow depth on the upstream side of the LWM structure to produce a conservative moment on the pile.

Factor of Safety

FOS ${ }_{\text {sliding }}=$	$\left(F_{h d}+F_{f}+F_{\text {piles-h }}+F_{\text {passive }}\right) /\left(F_{d}+F_{h u}+F_{i}\right)$		
$\mathrm{F}_{\text {d }}$	4,606	lb	
$\mathrm{F}_{\text {hu }}$		lb	
$\mathrm{F}_{\text {hd }}$		lb	
F_{i}	5,207	lb	
F_{f}	-12,413	lb	
$\mathrm{F}_{\text {passive }}$	-53,050	lb	
$F_{\text {piles-h }}$		lb	
$\mathrm{FOS}_{\text {sliding }}$	6.67		STABLE FOR SLIDING

Summary Comments:

Rotation Calculations

Project: Tucannon
Project Number: Project Number

Analyst:	$\left.\begin{array}{rl}\text { ASD } \\ \text { Calculations Checked By: } \\ \text { Latest Revision: } & \frac{\text { ALJ }}{\# \# \# \# \# \# \# \# \#} \\ \text { Lat }\end{array}\right)$

Latest Revision: \#\#\#\#\#\#\#\#\#

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM structure horizontal rotation.

Assumptions:

1) The LWM structue behaves as a single structure under the design load.
2) The effect of soil in back of the structure is negligible.
3) The structure will be submerged during the design event
4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells that are automatically updated are this color)
Output (Cells that are automatically updated with previously calculated values are this color)

FBD and Equations:

$$
F O S_{\text {rolation }}=\frac{\text { NAR ratation }}{\text { MDratarlan }} \quad \quad \text { Equation } 45
$$

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Rotation Factor of Safety (FOS rotation) for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".
Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS $_{\text {stany }}$	FOS $_{\text {boxmey }}$	FOS $_{\text {nowen }}$ FOS $_{\text {evrumen }}$
High	High	100 -year	1.75	2.0	1.75
High	Moderate	50 -year	1.5	1.75	1.5
High	Low	25 -year	1.5	1.75	1.5
Low	High	100 -year	1.75	2.0	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10 -year	1.25	1.5	1.25

1. Resistance to Rotation ($M R_{\text {rotation }}$ and $M D_{\text {rotation }}$)

$M D_{\text {rotation }}=\left(F_{i}+F_{d}+F_{h u}\right) *\left(\frac{L_{s p}+L_{e b p}}{2}\right)$
$L_{s p}=$ length of wood structure from tip to point of rotation measured
perpendicular to flow

$L_{\text {ebp }}=$ embedded length of wood structure measured perpendicular to flow

$M R_{\text {rotation }}=|$| $\left.F_{h d} *\left(\frac{L_{s p}+L_{\text {ebp }}}{2}\right)+F_{\text {passive }} * \frac{L_{e b p}}{2}+F_{f} * \frac{L_{s p}}{2}+\sum_{i}^{n} F_{p i l e-h_{i}} * L_{p h_{i}} \right\rvert\,$ |
| :--- |
| Equation 43 |

$F_{\text {pile-h }}=\frac{F_{\text {piles-h }}}{N_{\text {piles }}}$

$L_{p h i}=$| distance from pile ' i ' to the point of rotation measured perpendicular to |
| :--- |
| flow |

Driving:
Driving:

$L_{\text {sp }}$	12	ft	Length of wood structure from tip to point of rotation measured perpendicular to flow
$L_{\text {ebp }}$	7	ft	Embedded length of wood structure measured perp. to flow
F_{i}	5,207	lb	Impact Forces (Calc'd in Sliding)
F_{d}	4,606	Ib	Drag Forces (Calc'd in Sliding)
$\mathrm{F}_{\text {hu }}$		lb	Upstream Hydrostatic Forces (Calc'd in Sliding)
$\mathrm{MD}_{\text {rotation }}$	93,220	lb*ft	Eqn 42

Resisting:
$F_{\text {hd }}$ Ib Downstream Hydrostatic Forces (Calc'd in Sliding) $\mathrm{F}_{\text {passive }}$ $-53,050$ Ib Passive Forces (Calc'd in Sliding) F_{f} $-12,413$ Ib Friction Forces (Calc'd in Sliding) $\mathrm{F}_{\text {pile-h }}$ Ib Lateral Resistance from Piles (Calc'd in Sliding) $\mathrm{F}_{\text {pile-hi }}$ Ib Lateral Resistance from Piles (Calc'd in Sliding) $\mathrm{N}_{\text {piles }}$ Number of Piles (Design) $\mathrm{L}_{\text {phi }}$ 25 ft $\begin{array}{l}\text { Distance from pile to the point of rotation measured } \\ \text { perp. to flow. }\end{array}$ MR $_{\text {rotation }}$ $\mathbf{2 6 0 , 1 5 3}$ Ib*ft Eqn 43

Factor of Safety

FOS $_{\text {rotation }}=$	$M R_{\text {rotation }} / M D_{\text {rotation }}$		
$\mathrm{MD}_{\text {rotation }}$	$93,220 \quad \mathrm{lb}$		
$\mathrm{MR}_{\text {rotation }}$	$260,153 \quad \mathrm{lb}$		
FOS $_{\text {rotation }}$	2.79		STABLE FOR ROTATION

Summary Comments:

Rotation Calculations

Project:
Project Number: | |

Analyst: ASD
Calculations Checked By: ALJ Latest Revision: \#\#\#\#\#\#\#\#\#

Overturning Calculations

Project:	Tucannon
Project Number:	Project Number

Latest Revision: \qquad

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against vertical overturning.

Assumptions:

1) The LWM structure behaves as a single structure under the design load.
2) The effect of soil in back of the structure is negligible.
3) The structure will be submerged during the design event
4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)

Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

Equation 49

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Overturn Factor of Safety ($\mathrm{FOS}_{\text {overturn }}$) for this structure is \#.\# per Table 4 "Minimum Recommended Factors of Safety".

1. Resistance to Overturn (MR rotation and $M D_{\text {rotation }}$)

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	$\mathrm{FOS}_{3 \text { tam9 }}$	$\mathrm{FOS}_{\text {baxmey }}$	$\begin{aligned} & \text { FOS }_{\text {nowen }} \\ & \text { FOS }_{\text {everumen }} \end{aligned}$
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25 -year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25 -year	1.5	1.75	1.5
Low	Low	10 -year	1.25	1.5	1.25

Driving:

F_{i}	5,207	Ib	Impact Forces (Calc'd in Sliding)
F_{d}	4,606	Ib	Drag Forces (Calc'd in Sliding)
$\mathrm{F}_{\text {hu }}$		Ib	Upstream Hydrostatic Forces (Calc'd in Sliding)
F_{L}	$-1,382$	Ib	Lift Forces (Assumed Zero in Buoyancy Calcs)
Y_{u}	3.5	ft	Upstream water elevation from model
$\mathrm{d}_{\text {ubury }}$		ft	Depth at upstream side of structure from channel bottom to point of rotation measured perp to flow
L_{s}		ft	Length of structure parallel to flow
$\mathrm{MD}_{\text {overturn }}$	$\mathbf{2 6 , 2 8 5}$	$\mathrm{Ib}^{*} \mathrm{ft}$	Eqn 46

$$
M D_{\text {overturn }}=F_{i} *\left(Y_{u}+d_{\text {bury }}\right)+F_{d} *\left(\frac{Y_{u}}{2}+d_{\text {bury }}\right)+F_{\text {hu }} *\left(\frac{Y_{u}}{3}+d u_{\text {bury }}\right)+\left|F_{L}\right| * L_{s}
$$

Equation 46

$d u_{\text {bur }}=$ depth at the upstream side of the structure from channel bottom to point of rotation measured perpendicular to flow	
$L s=$ length of structure measured parallel to flow	
$M R_{\text {overturn }}=\left\|F_{\text {hd }}\right\| *\left(\frac{Y_{a}}{2}+d d_{\text {bury }}\right)+\left\|F_{\text {passive }}\right\| *\left(d d_{\text {bury }}\right)+\left(F_{b}-F_{L}-\right.$	
$\left.F_{\text {piles-v }}\right) * \frac{L_{s}}{2}+\sum_{i}^{n} F_{\text {pile-v }}{ }^{*} * L p v_{i}$	Equation 47
$F_{\text {pile-v }}{ }_{\text {d }}=\frac{F_{\text {pltes }-v}}{N_{\text {plles }}}$	Equation 48
$L_{p v i}=$ distance from pile ' i ' to the point of rotation me	el to flow
$F O S_{\text {overturn }}=\frac{M R_{\text {overturn }}}{M D_{\text {overtur }}}$	Equation 49

Resisting:

Resisting:
$\mathrm{F}_{\text {hd }}$ Ib Downstream Hydrostatic Forces (Calc'd in Sliding) $\mathrm{F}_{\text {passive }}$ $-53,050$ Ib Passive Forces (Calc'd in Sliding) F_{b} 14,279 Ib Buoyancy Forces (Calc'd in Sliding) $\mathrm{F}_{\text {pile-v }}$ Ib Lateral Resistance from Piles (Calc'd in Sliding) Y_{d} 3.5 ft Downstream water elevation $\mathrm{d}_{\text {dbury }}$ 6 ft Depth at downstream side of structure from channel bottom to point of rotation measured perp to flow $\mathrm{N}_{\text {piles }}$ Number of Piles (Design) $\mathrm{L}_{\text {pvi }}$ ft Distance from pile to the point of rotation measured parallel to flow. $\mathrm{F}_{\text {pile-vi }}$ Ib Eqn 48 $\mathrm{MR}_{\text {overturn }}$ 318,303 $\mathrm{Ib} \mathrm{ft}^{*}$ Eqn 47

Factor of Safety

FOS $_{\text {overturnon }}=M R_{\text {overturn }} / M D_{\text {overturn }}$			
$\mathrm{MD}_{\text {overturn }}$	$26,285 \quad \mathrm{lb}$		
$\mathrm{MR}_{\text {overturn }}$	$318,303 \quad \mathrm{lb}$		
FOS $_{\text {overturn }}$	$\mathbf{1 2 . 1 1}$	STABLE FOR OVERTURN	

Overturning Calculations

Project:
Project

Sumber:

Analyst:	ASD
Calculations Checked By:	
Latest Revision:	ALJ $2 / 28 / 2023$

Factor of Safety Summary

Project:	Tucannon
Project Number:	Project Numbe

Analyst:	ASD
Calculations Checked By:	
Latest Revision:	ALJ $2 / 28 / 2023$

Spreadsheet Description

Purpose: The spreadsheet below summarizes the factors of safety for the LWD structure.
Assumptions:

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this

Tables and Equations:

$$
\begin{aligned}
& F O S_{b}=\frac{F_{\text {LWM M }}+F_{\text {honiders }}+F_{\text {soul }}+F_{\text {pules }}}{\left|F_{\text {CWM }}+F_{L}\right|} \\
& F O S_{D}=\text { buoyancy factor of safety } \\
& F O S_{\text {sliding }}=\frac{\left|F_{h d}+F_{f}+F_{p l l e s-h}+F_{\text {passive }}\right|}{F_{d}+F_{h u}+F_{i}} \\
& F O S_{\text {rotatien }}=\frac{\text { Nen ratatioa }}{\text { MDPararlan }}
\end{aligned}
$$

$$
\begin{aligned}
& F O S_{D}=\text { buoyancy factor of safety }
\end{aligned}
$$

Equation 41

$$
\text { Equation } 45
$$

Equation 49

1. Factors of Safety Summary

Project Public Safety Risk	High
Project Property Damage Risk	Low

Safety Factors		Minimum Recommended Safety Factor	Calculated Safety Factor	Result
Buoyancy	FOS $_{\mathrm{b}}$	1.5	2.62	OK!
Sliding	FOS $_{\text {sliding }}$	1.25	6.67	OK!
Rotation	FOS $_{\text {rotation }}$	1.25	2.79	OK!
Overturn	FOS $_{\text {overturn }}$	1.25	12.11	OK!

Summary Comments:

