Project:	Tucannon
Project No.:	Project Number

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/27/2023

Spreadsheet Description

- The spreadsheet below is used to calculate the Factor of Safety against Buoyant uplift of the LWM

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints

2) The LWM structure will be submerged during the design event.

3) Negative buoyancy is uplift, positive numbers equals downward.

4) Ballast material remains intact and is not scoured out.

5) The uplift due to racking material is evenly dividing among all layers.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Input (Cells requiring input from a dropdown list)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

$$\begin{split} FOS_b = & \frac{F_{LWMd+F_{bouldsrs+F_{soll}+F_{piles-x}}}{|F_{LWMx+F_L}|} \\ FOS_b = & buoyancy factor of safety \end{split}$$

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design buoyancy factor of safety (FOS_b) for this structure is #.# per Table 4 "*Minimum Recommended Factors of Safety*".

Table 4	Minimum	recommended	factors of safety	١.

Public Safety Risk Risk Risk		Stability Design Flow Criteria	FOS _{aliding}	FOS _{bocyarcy}	FOS _{rotation} FOS _{overturning}	
High	High	100-year	1.75	2.0	1.75	
High	Moderate	50-year	1.5	1.75	1.5	
High	Low	25-year	1.5	1.75	1.5	
Low	High	100-year	1.75	2.0	1.75	
Low	Moderate	25-year	1.5	1.75	1.5	
Low	Low	10-year	1.25	1.5	1.25	

1. Large Wood Material Force - Dry (FIWMM)

 $F_{LWMd} = V_{LWMd} * \gamma_{wood}$ V_{LWMd} = volume of dry large wood material Equation 3

Equation 18

Comment: Assumed to be zero because structure assumed to be submerged during design event.

2. Boulder Ballast Force (F_{boulder})

N _{bouldersub}			Number of submerged boulders (from design)
d _{bouldersub}	2.5	ft	Effective diameter of submerged boulder (ft, from spec)
$\gamma_{boulder}$	146	lb/ft ³	unit weight of boulders (Table 5)
γ_{water}	62.4	lb/ft ³	unit weight of water
F _{bouldersub}		lb	Eqn. 6
N _{boulderdry}			Number of dry boulders (from detail)
d _{boulderdry}	2.5	ft	Effective diameter of dry boulder (ft, from spec)
F _{boulderdry}		lb	Eqn. 7
F _{boulder}		lb	Eqn. 5

$F_{boulder} = F_{bouldersub} + F_{boulderdry}$	Equation 5
$F_{bouldersub} = N_{bouldersub} * \frac{\pi}{6} * d^3_{bouldersub} * (\gamma_{boulder} - \gamma_w)$	Equation 6
N _{bouldersub} = number of submerged boulders	
d _{bouldersub} = effective diameter of submerged boulders	
$\gamma_{boulder}$ = unit weight of boulders	
$F_{boulderdry} = N_{boulderdry} * \frac{\pi}{6} * d^3_{boulderdry} * \gamma_{boulder}$	Equation 7
N _{boulderdry} = number of unsubmerged boulders	
<i>d</i> _{boulderdry} = effective diameter of unsubmerged boulders	

Comment: The intent is design without the use of boulders so it is assumed no boulders are used.

18,668

lb

Eqn. 8

Project: Project No.:

Tucannon Project Number

3. Soil Backfill Force (F_{soil})

N_{logssub1}

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/27/2023	
$F_{soil} = \sum_{i}^{n} V_{soilsubi} * \gamma'_{soil} + V_{soildry} * \gamma_{soil}$	Equation 8
$\label{eq:Vsoilsub_l} V_{soilsub_l} = L_{eb_l} d_{bole_l} h_{soilsub_l}$ $V_{soilsubl} = volume of submerged soil above log i L_{ebi} = embedded length of log i$	Equation 9

d_{bolei} = bole diameter of log i

h_{sollsubl} = height of submerged soil above log i

N _{logssub1}	2		Number of Type 1 buried logs (from detail)
L _{eb1}	26.5	ft	Average embedded length of Type 1 logs (from detail)
d _{bole1}	1.5	ft	Average diameter of Type 1 logs (from detail)
h _{soilsub1}	3	ft	Average height of submerged soil above Type 1 log (from detail)
V _{soilsub1}	239	ft ³	Volume of submerged soil above Type 1 log (from detail)
h _{soildry1}		ft	Average height of dry soil above Type 1 log (from detail)
V _{soildry1}		ft ³	Volume of dry soil above Type 1 log (from detail)
N _{logssub2}	1		Number of Type 2 buried logs (from detail)
L _{eb2}		ft	Average embedded length of Type 2 logs (from detail)
d _{bole2}	2	ft	Average diameter of Type 2 logs (from detail)
h _{soilsub2}		ft	Average height of submerged soil above Type 2 log (from detail)
V _{soilsub2}		ft ³	Volume of submerged soil above Type 2 log (from detail)
h _{soildry2}		ft	Average height of dry soil above Type 2 log (from detail)
V _{soildry2}		ft ³	Volume of dry soil above Type 2 log (from detail)
N _{logssub3}	3		Number of Type 3 buried logs (from detail)
L _{eb3}		ft	Average embedded length of Type 3 logs (from detail)
d _{bole3}	1	ft	Average diameter of Type 3 logs (from detail)
h _{soilsub3}		ft	Average height of submerged soil above Type 3 log (from detail)
V _{soilsub3}		ft ³	Volume of submerged soil above Type 3 log (from detail)
h _{soildry3}		ft	Average height of dry soil above Type 3 log (from detail)
V _{soildry3}		ft ³	Volume of dry soil above Type 3 log (from detail)
$\gamma_{ m soil}$	126	lb/ft ³	Specific Gravity of bank/backfill material (Table 5)
γ_{water}	62.4	lb/ft ³	Unit weight of water
SG _{rock}	2.64		Specific Gravity of Rock (Using unit weight of bedrock from Table 5)
е	0.31		Eqn. 14
γ_{sat}	141	lb/ft ³	Eqn. 13
γ'soil	78.3	lb/ft ³	Eqn. 12
-			

$V_{soildry_i} = L_{eb_i} d_{bole_i} h_{soildry_i}$	Equation 10
V _{soildryi} = volume of dry soil above log i	
$h_{soildryi}$ = height of dry soil above log i	
$\gamma_{soil} = (99.2 + 18.6 * \log(d_{50}))$	Equation 11
d ₅₀ = median grain size in millimeters	
$\gamma_{soil}' = \gamma_{sat} - \gamma_w$	Equation 12

$\gamma_{sat} = \frac{(SG_{rock} + e) * \gamma_W}{1 + e}$	Equation 13
$e = \frac{SG_{rock}*\gamma_{W}}{\gamma_{soil}} - 1$	Equation 14

Project: Project No.:	Tucannon Project Num	ıber		Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/27/2023
4. Pile Skin Friction				
N _{piles}			Number of piles (Design)	$F_{piles-v} = N_{piles} * \pi * d_{piles} * L_{piles}(k_s * \tan\frac{2}{3}\emptyset * \sigma' + \frac{d_{piles}}{4} * (\gamma_{wood} - \gamma_w))$
d _{piles}	0.5	ft	Diameter of piles (Design)	Equation 15
L _{piles}	7.5	ft	Embedded length of piles (Design)	N _{piles} = number of piles d _{ailes} = diameter of piles
k _s	1		Coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density)	ϕ_{pines} = embedded length of piles k_s = coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density) ϕ = internal angle of friction of soils
Placement Method	Driven or Vibrated		Method of pile placement	$\varphi = internal angle of friction of solis$ $\sigma' = L_{piles} * (\gamma_{sat} - \gamma_w)$ Equation 16
Placement Multiplier	1		See RBDG (P. 52)	
Pile Placement Location	Bed		Bed or Bank	
Ф _{soil}	0.72	rad	Internal angle of friction of soils (Table 5)	
γ_{soil}	137	lb/ft ³	Specific Weight of Soil	
е	0.20		Eqn. 14	$\gamma_{\text{sat}} = \frac{(s_{\text{Grack}} + e) \gamma_{\text{He}}}{1 + e}$ Equation 13
γ_{sat}	148	lb/ft ³	Eqn. 13	$e = \frac{56r_{orb} \times \gamma_{W}}{\gamma_{out}} - 1$ Equation 14
γ_{water}	62.4	lb/ft ³	Unit weight of water	
σ'	638	lb/ft ²	Eqn 16	
γ_{wood}	33	lb/ft ³	Unit weight of wood	
F _{piles-v}		lb	Eqn 15	

Assumptions:

* k_s = 1

** This calculation is based on the assumption that piles are driven or vibrated into place. If piles are drilled or excavated, the associated coefficicient of lateral earth pressures shall be approx. 50% and 25% of the driven value, respectively. *** For use in buoyancy calculations, piles must be mechanically fastened.

Equation 2

**** Top 2' of pile embedment disregarded for calculation to account for vortex shedding.

5. Large Wood Material Force - Submerged (FI WMs)

 $F_{LWMs} = V_{LWMs} * (\gamma_{wood} - \gamma_w)$ $V_{LWMs} = volume of submerged large wood material$ $<math>\gamma_{wood} = unit$ weight of wood $\gamma_w = unit$ weight of water

N _{logssub1}	2		Number of log type 1 (from detail)
L _{log1}	40	ft	Length of log type 1 (from detail)
d _{bole1}	1.5	ft	Diameter of log type 1 (from detail)
d _{rw1}	3.00	ft	Diameter of rootwad of log type 1 (from detail)
V _{LWMs1}	156	ft ³	Volume of LWM1
N _{logssub2}	2		Number of log type 2 (from detail)
L _{eb2}	25	ft	Length of log type 2 (from detail)
d _{bole2}	1.75	ft	Diameter of log type 2 (from detail)
d _{rw2}	4	ft	Diameter of rootwad of log type 2 (from detail)
V _{LWMs2}	150	ft ³	Volume of LWM2
N _{logssub3}	1		Number of log type 3 (from detail)
L _{eb3}	15	ft	Length of log type 3 (from detail)
d _{bole3}	0.75	ft	Diameter of log type 3 (from detail)

Volume of Rootwad

National Large Wood Manual. 2016 Equation 6-4 (p. 6-38) $V_{rw} = \pi^* t_k * w_k^2 / 3$ $\pi^* (2d_{bole}) * (1/2d_{rw})^2 / 3$

- t_k = Thickness of rootwad measured in direction parallel to trunk
 - = 4 times the radius of the log $(4r_k or$

w_k =

Radius of rootwad

Project: Project No.:

Tucannon Project Number

F _{LWMs}	-9,165	lb	Egn. 3
γw	62.4	lb/ft ³	Unit weight of water
γwood	33.0	lb/ft ³	Unit weight of logs
V _{LWMs}	312	ft ³	Volume of LWM
V _{LWMs3}	7	ft ³	Volume of LWM3
d _{rw3}		ft	Diameter of rootwad of log type 3 (from detail)

6. Lift Forces (F₁)

CL	0.45		Lift Coefficient
A _{LWM}	120	ft ²	Calc'd in Drag Forces
γw	62.4	lb/ft ³	Unit weight of water
U _o	6.5	ft/s	upstream velocity (from model)
g	32.2	ft/s ²	Unit weight of water
FL	-2,211	lb	Eqn. 4

Comment: Lift forces neglected per Section 6.4.2 of BOR Risk Based Design Guidelines

Factor of Safety

FOS _b =	(F _{LMDd} +F _{bol}	ulders +F s	$_{oil}$ +F $_{piles-v}$) / (F $_{LWMs}$ +F $_{L}$)
F _{LWMd}		lb	Assumed Zero
F _{boulder}		lb	
F _{soil}	18,668	lb	
F _{piles-v}		lb	
F _{LWMs}	-9,165	lb	
FL	-2,211	lb	
FOS _b	1.64		STABLE FOR BUOYANCY

Summary Comments:

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/27/2023 = 2.5 times the radius of the log $(2.5r_k)$ or 1.25d $_{\text{bole}})$ or 1/2 d $_{\text{rw}}$ specified

Equation 4

 $C_{L} = lift coefficient$ A_{LWM} = area of large woody material perpendicular to flow $u_u = upstream$ channel velocity at design event g = acceleration due to gravity

2+g

 $F_L = -\frac{c_L * A_{LWM} * \gamma_W * U_0^2}{c}$

Project: Project No.:

Tucannon Project Number

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM sliding.

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints.

2) The effect of soil in back of the structure is negligible.

3) The structure will be submerged during the design event.

4) Channel velocity (V_c) taken from hydraulic model.

5) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

 $\textit{FOS}_{sliding} = \frac{|\textit{Fhd} + \textit{F}_{f} + \textit{F}_{piles-h} + \textit{F}_{passive}|}{\textit{F}_{d} + \textit{F}_{hu} + \textit{F}_{i}}$

Equation 41

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Sliding Factor of Safety (FOS $_{\rm sliding})$ for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{siding}	FOS _{bouyancy}	FOS _{rotation} FOS _{overturning}
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1,75	1.5
High	Low	25-year	1.5	1,75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Drag Force (F_d)

Yu	4.50	ft	Upstream water depth
hdebris	6	ft	Debris height (incl. accumulation)
wdebris	20	ft	Debris width (incl. accumulation)
Debris Shape	Rectangle		
A _{LWM}	120	ft ²	Wetted area of LWM
γ_{water}	62.40	lb/ft ³	Unit weight of water
v _c	6.50	ft/s	Velocity from Model
g	32.20	ft/s ²	Acceleration due to gravity
A _b	120.00	ft ²	Debris area
W _{channel}	60	ft	Channel width
C _d	1.50		NLWM Worst Case
Fd	7369	lb	Eqn 19

$F_d = \frac{C_D * A_{LWM} * \gamma_W * U_c^2}{2 * g} \quad \text{Equation 19}$

 $F_d = drag force$

 $C_d = drag \ coefficient$ ALWM = area of wetted debris based on the upstream water surface

elevation projected normal to flow direction and the potential drift accumulation

 $\gamma_w = unit weight of water$

 $U_c = velocity$ in contracted section g = acceleration due to gravity

Cd can be assumed 0.9 when fully submerged, 1.5 when WSEL within

 $C_{d-applied} = \frac{c_d}{(1-B)^2}$

C_d is typically estimated as 1.0 Equation 27

Analyst: ASD Calculations Checked By: ALJ Latest Revision: #########

Project: Project No.: Tucannon Project Number

3. Impact Force (Fi)

F _i Assumption:	7,805	lb	Eqn 30
R _{max}	0.8		Response ratio for impulsive loads
C _b	0.6		ASCE 7-05
Degree of Screening or Sheltering Upstream	Limited upstream screening, flow path 20' wide		ASCE 7-05
C _d	0.875		Figure 11 (need water depth from model)
C _o	0.8		Coefficient of orientation
C _i	0.8		Coefficient of importance (from Table 6)
∆t	0.03	sec	Impact Interval (0.03 sec recommended)
V _{channel}	6.5	ft/s	Velocity from Model
g	32.2	ft/s ²	Acceleration due to gravity
W _{debris}	2,747	lb	weight of debris
γwood	33	lb/ft ³	Unit weight of wood
V _{debris}	83	ft ³	Volume of debris
d _{rwdebris}	4	ft	Rootwad diameter of debris member (Design)
d _{boledebris}	1.5	ft	Bole diameter of debris member (Design)
L _{debris}	40	ft	Length of debris member (Design)

Analyst: ASD Calculations Checked By: ALJ Latest Revision: #########

Equation 30

 $F_i = \frac{\pi w_{debris} * V_{channel} * C_i * C_o * C_d * C_b * R_{max}}{2 * g * \Delta t}$

 $F_i = impact force$

 $w_{debris} = weight of debris$

g = acceleration constant due to gravity

 $V_{channel} = water velocity in channel$

 $\Delta t = time from initial velocity to zero velocity$

 $C_i = coefficient of importance$

 $C_o = coefficient of orientation = 0.8$

 $C_d = coefficient of depth$

 $C_b = coefficient of blockage$

 R_{max} = response ratio for impulsive loads = 0.8

*Largest impact force would be generated by structure being struck by floating large key member. For impact calculation, assuming 18" diameter, 30' long member with rootwad impacts structure. **See Section 6.3.3 of LWM RBDG (P. 44) for debris loading sizing.

4. Friction Force (F_f)

Φ_{bed}	0.72	radians	Calculated for streambed material (small cobble)
μ_{bed}	0.87		Eqn 32
F _{LWMd}		lb	Buoyancy Calcs
F _{boulder}		lb	Buoyancy Calcs
F _{soil}	18668	lb	Buoyancy Calcs
F _{piles-v}		lb	Buoyancy Calcs
F _{LWMs}	-9165	lb	Buoyancy Calcs
FL	-2211	lb	Buoyancy Calcs
F _b	7,293	lb	Eqn 17
F _f	-6,340	lb	Eqn 31

$F_f = -\mu_{bed} * (F_b - F_{piles-v})$	Equation 31	
F _f = force due to frictional resistance		
F _D -F _{piles-v} >0		
$\mu_{bed}=\tan\emptyset$	Equation 32	
$F_b = F_{LWMs} + F_{LWMd} + F_L + F_{boulder} + F_{soil} + F_{piles-v}$	Equation 17	

Note:

*If buoyancy forces are less than vertical pile forces (Fb-Fpiles-v<0), then friction force = 0.

Project: Project No.: Tucannon Project Number

5. Passive Forces (F_{passive})

			Calculated for bank material (very	1
^(†) bank	0.66	radians	course gravel)	
K _p	4.20		Eqn 34	4.2037458
γ_{water}	62.4	lb/ft ³	Unit weight of water	
$\gamma_{\rm soil}$	126	lb/ft ³	Unit weight of soil	
γ_{sat}	141	lb/ft ³	Previously calculated for buoyancy calcs	
N _{logssub1}	2		Number of log type 1 (from detail)	
Orientation ₁ **	Perpendicular		Perpendicular or Parallel to flow	
L _{eb1}	26.5	ft	Length of log type 1 (from detail)	
d _{bole1}	1.5	ft	Diameter of log type 1 (from detail)	
D _{sub1}	3	ft	Depth of submerged soil above log 1	
D _{dry1}		ft	Depth of dry soil above log 1	
[⊕] v1	235	lb/ft ²		
$\sigma_{v1}*L_{eb1}*\gamma_{soil}$	18,668	lb		
N _{logssub2}	1		Number of log type 2 (from detail)	
Orientation ₂ **	Parallel		Perpendicular or Parallel to flow	
L _{eb2}		ft	Length of log type 2 (from detail)	
d _{bole2}	2	ft	Diameter of log type 2 (from detail)	
D _{sub2}		ft	Depth of submerged soil above log 2	
D _{dry2}		ft	Depth of dry soil above log 2	
σ ν2		lb/ft ²		
$\sigma_{v2}*L_{eb2}*\gamma_{soil}$		lb		
N _{logssub3}	3		Number of log type 3(from detail)	
Orientation ₃ **	Perpendicular		Perpendicular or Parallel to flow	
L _{eb3}		ft	Length of log type 3 (from detail)	
d _{bole3}	1	ft	Diameter of log type 3 (from detail)	
D _{sub3}		ft	Depth of submerged soil above log 3	
D _{dry3}		ft	Depth of dry soil above log 3	
σ _{v3}		lb/ft ²		
$\sigma_{\rm v3}*L_{\rm eb3}*\gamma_{\rm soil}$		lb		
F _{passive}	-39,238	lb	Eqn 31	

** Eqns 33 through 35 represent the case where passive forces act

$F_{passive} = -0.5 * K_p * \sum_{i}^{n} \sigma_{v_i} * L_{em_i} * d_{log_i}$	Equ
$K_p = \frac{1 + \sin \emptyset}{1 - \sin \emptyset}$	Equ
$\sigma_{v_i} = D_{sub_i} * (\gamma_{sat} - \gamma_{water}) + D_{dry_i} * \gamma_{soil}$	Equ
D _{subi} = depth of submerged soil above log i	

 D_{subi} – depiring submerged som above id D_{dryi} = depth of dry soil above log i L_{emi} = embedded length of log i d_{logi} = diameter of log i

Project:	Tucannon
Project No.:	Project Number

6. Lateral Resistance from Piles (Fpiles-h)

F _{piles-h}	-8,359	lb	Eqn 15
h _{load} **	3	ft	Height above scour depth load is applied
K _p	4.81		Eqn 38
ф _{soil}	0.72	radians	Calculated for material pile is located
γ_{e}	74.6	lb/ft ³	Eqn 37
γ_{soil}	137	lb/ft ³	Unit weight of soil
γ_{water}	62.4	lb/ft ³	Unit weight of water
Pile Placement Location	Bed		Bed or Bank
Placement Multiplier	0.25		See RBDG (P. 52)
Placement Method	Drilled		Method of pile placement
L _{piles}	8	ft	Embedded length of piles below scour (Design)
d _{piles}	1	ft	Diameter of piles (Design)
N _{piles}	4		Number of piles (Design)

Analyst:	ASD
Calculations Checked By:	ALJ
Latest Revision:	##########

 $F_{piles-h} = -N_{piles} * \frac{L_{pile}^3 + \gamma_{e^*} d_{pile} + K_p}{h_{load} + L_{pile}}$ Equation 36

 N_{piles} = number of piles L_{pile} = length of pile embedded below potential scour depth

 $\gamma_e = \gamma_s - \gamma_w$ effective unit weight of soil Equation 37 $\gamma_s = dry$ unit weight of the soil

 γ_w = unit weight of the soil

 d_{pile} = diameter of the pile h_{load} = height above the potential scour depth the load is applied

 $K_p = \frac{1 + \sin \phi}{1 - \sin \phi}$

Equation 38

* Top 2' of pile embedment disregarded for calculation to account for vortex shedding.

** Analysis also assumes that the resultant force is located at half of the flow depth on the upstream side of the LWM structure to produce a conservative moment on the pile.

Factor of Safety

FOS _{sliding} =	(F hd +F f +F piles	_{s-h} +F _{passi}	ve) / (F _d +F _{hu} +F _i)
F _d	7,369	lb	
F _{hu}		lb	
F _{hd}		lb	
Fi	7,805	lb	
F _f	-6,340	lb	
F _{passive}	-39,238	lb	
F _{piles-h}	-8,359	lb	
FOS _{sliding}	3.55		STABLE FOR SLIDING

Rotation Calculations

Project: Tucannon Project Number: Project Number

Analyst: ASD Calculations Checked By: ALJ Latest Revision: #########

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM structure horizontal rotation.

Assumptions:

1) The LWM structue behaves as a single structure under the design load.

2) The effect of soil in back of the structure is negligible.

3) The structure will be submerged during the design event

4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

FBD and Equations:

FOS_{rutation} = MB_{rotation}

Table 4. Minimum recommended factors of safety.

Equation 45

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Rotation Factor of Safety (FOS_{rotation}) for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{stiding}	FOS _{bocyancy}	FOS _{rotation} FOS _{overturning}	
High	High	100-year	1.75	2.0	1.75	
High	Moderate	50-year	1.5	1.75	1.5	
High	Low	25-year	1.5	1.75	1.5	
Low	High	100-year	1.75	2.0	1.75	
Low	Moderate	25-year	1.5	1.75	1.5	
Low	Low	10-year	1.25	1.5	1.25	

1. Resistance to Rotation (MR_{rotation} and MD_{rotation})

 $\begin{array}{l} MD_{rotation} = (F_i + F_d + F_{hu}) * (\frac{L_{sp} + L_{ebp}}{2}) \\ L_{sp} = length of wood structure from tip to point of rotation measured \end{array}$

perpendicular to flow

 $L_{ebp} = embedded \ length \ of \ wood \ structure \ measured \ perpendicular \ to \ flow$

$$MR_{rotation} = \left| F_{hd} * \left(\frac{L_{sp} + L_{ebp}}{2} \right) + F_{passive} * \frac{L_{ebp}}{2} + F_{f} * \frac{L_{sp}}{2} + \sum_{i}^{n} F_{pile-h_{i}} * L_{ph_{i}} \right|$$

Equation 43

 $F_{pile-h_i} = \frac{F_{piles-h}}{N_{piles}}$ Equation 44 L_{phi} = distance from pile 'i' to the point of rotation measured perpendicular to flow

|--|

MD _{rotation}	227,613	lb*ft	Eqn 42
F _{hu}		lb	Upstream Hydrostatic Forces (Calc'd in Sliding)
F _d	7,369	lb	Drag Forces (Calc'd in Sliding)
Fi	7,805	lb	Impact Forces (Calc'd in Sliding)
L _{ebp}	10	ft	Embedded length of wood structure measured perp. to flow
L _{sp}	20	ft	Length of wood structure from tip to point of rotation measured perpendicular to flow

Resisting:

F _{hd}		lb	Downstream Hydrostatic Forces (Calc'd in Sliding)
F _{passive}	-39,238	lb	Passive Forces (Calc'd in Sliding)
F _f	-6,340	lb	Friction Forces (Calc'd in Sliding)
F _{pile-h}	-8,359	lb	Lateral Resistance from Piles (Calc'd in Sliding)
F _{pile-hi}	-2,090	lb	Lateral Resistance from Piles (Calc'd in Sliding)
N _{piles}	4		Number of Piles (Design)
L _{phi}	35	ft	Distance from pile to the point of rotation measured
	00		perp. to flow.
MP	EE2 166	lb*ft	Eap 42

Factor of Safety

FOS _{rotation} =	MR rotation / MD rotation	1
MD _{rotation}	227,613 lb	
MR _{rotation}	552,166 lb	
FOS _{rotation}	2.43	STABLE FOR ROTATION

Rotation Calculations

Project: Project Number:

Tucannon Project Number

Overturning Calculations

Project: Tucannon Project Number:

Project Number

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/27/2023

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against vertical overturning.

Assumptions:

1) The LWM structure behaves as a single structure under the design load.

2) The effect of soil in back of the structure is negligible.

3) The structure will be submerged during the design event

4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

 $FOS_{overturn} = \frac{MR_{overturn}}{MD_{overturn}}$

Equation 49

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Overturn Factor of Safety (FOS_{overturn}) for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

1. Resistance to Overturn (MR_{rotation} and MD_{rotation})

MD overturn	51,704	lb*ft	Ean 46
Ls		ft	Length of structure parallel to flow
d _{ubury}		ft	Depth at upstream side of structure from channel bottom to point of rotation measured perp to flow
Yu	4.5	ft	Upstream water elevation from model
FL	-2,211	lb	Lift Forces (Assumed Zero in Buoyancy Calcs)
F _{hu}		lb	Upstream Hydrostatic Forces (Calc'd in Sliding)
F _d	7,369	lb	Drag Forces (Calc'd in Sliding)
Fi	7,805	lb	Impact Forces (Calc'd in Sliding)
Driving:			

Resisting.

MRoverturn	176.570	lb*ft	Ean 47
F _{pile-vi}		lb	Eqn 48
L _{pvi}	35	ft	Distance from pile to the point of rotation measured parallel to flow.
N _{piles}	2		Number of Piles (Design)
d _{dbury}	4.5	ft	Depth at downstream side of structure from channel bottom to point of rotation measured perp to flow
Y _d	4.5	ft	Downstream water elevation
F _{pile-v}	-8,359	lb	Lateral Resistance from Piles (Calc'd in Sliding)
F _b	7,293	lb	Buoyancy Forces (Calc'd in Sliding)
F _{passive}	-39,238	lb	Passive Forces (Calc'd in Sliding)
F _{hd}		lb	Downstream Hydrostatic Forces (Calc'd in Sliding)

Factor of Safety

MR _{overturn} FOS _{overturn}	176,570 3.42	lb	STABLE FOR OVERTURN	
MD _{overturn}	51,704	lb		
FOS _{overturnon} = MR _{overturn} / MD _{overturn}				

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{aliding}	FOS _{bocyancy}	FOS _{rotation} FOS _{overturning}
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

$MD_{overturn} = F_i * \left(Y_u + d_{bury}\right) + F_d * \left(\frac{Y_u}{2} + d_{bury}\right) + F_{hu} * \left(\frac{Y_u}{3} + du_{bury}\right) + |F_L| * L_s$ Equation 46

 $du_{bury} = depth$ at the upstream side of the structure from channel bottom to point of rotation measured perpendicular to flow Ls = length of structure measured parallel to flow

$(F_b - F_L - F_L) + (F_b - F_L) - F_L$	$MR_{overturn} = F_{hd} * \left(\frac{Y_d}{2} + dd_{bury}\right) + F_{passive} * \left(dd_{bury}\right)$
Equation 47	$F_{piles-\nu}) * \frac{L_s}{2} + \sum_i^n F_{pile-\nu_i} * Lp\nu_i$
Equation 48	$F_{nile-v} = \frac{F_{piles-v}}{c}$

$L_{pvi} = distance from pile 'i' to the point$	of rotation measured parallel to flow
$FOS_{overturn} = \frac{MR_{overturn}}{MD_{overturn}}$	Equation 49

Overturning Calculations

Project: Project Number:

Tucannon Project Number

Summary Comments:

 Analyst:
 ASD

 Calculations Checked By:
 ALJ

 Latest Revision:
 2/27/2023

Factor of Safety Summary

Project: Tucant Project Number: Project

Tucannon Project Number
 Analyst:
 ASD

 Calculations Checked By:
 ALJ

 Latest Revision:
 2/27/2023

Spreadsheet Description

Purpose: The spreadsheet below summarizes the factors of safety for the LWD structure.

Assumptions:

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this

Tables and Equations:

$FOS_b = \frac{F_{LWMd} + F_{boulders} + F_{soil} + F_{piles-\pi}}{ F_{LWMs} + F_L }$	Equation 18
FOS _b = buoyancy factor of safety	
$FOS_{sliding} = \frac{ F_{hd} + F_f + F_{pliss-h} + F_{passive} }{F_d + F_{hu} + F_l}$	Equation 41
$FOS_{rotation} = \frac{MR_{rotation}}{MD_{rotation}}$	Equation 45
$FOS_{overturn} = \frac{MR_{overturn}}{MD_{overturn}}$	Equation 49

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{aliding}	FOS _{bocyarcy}	FOS _{rotation} FOS _{overturning}
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Factors of Safety Summary

Project Public Safety Risk	High
Project Property Damage Risk	Low

Safety Factors		Minimum Recommended Safety Factor	Calculated Safety Factor	Result	
Buoyancy	FOSb	1.50	1.64	OK!	
Sliding	FOS _{sliding}	1.25	3.55	OK!	
Rotation	FOS _{rotation}	1.25	2.43	OK!	
Overturn	FOS _{overturn}	1.25	3.42	OK!	

Project:	Tucannon		
Project No.:	Project Number		

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/28/2023

Spreadsheet Description

- The spreadsheet below is used to calculate the Factor of Safety against Buoyant uplift of the LWM

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints

2) The LWM structure will be submerged during the design event.

3) Negative buoyancy is uplift, positive numbers equals downward.

4) Ballast material remains intact and is not scoured out.

5) The uplift due to racking material is evenly dividing among all layers.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Input (Cells requiring input from a dropdown list)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

 $FOS_b = \frac{F_{LWMd} + F_{bouldars} + F_{soll} + F_{piles-\sigma}}{|F_{LWMs} + F_L|}$ FOS_b = buoyancy factor of safety

> * PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design buoyancy factor of safety (FOS_b) for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

Table 4	Minimum	recommended	factors	of safety

Property Damage Risk Risk		Stability Design Flow Criteria	FOS _{aliding}	FOS _{bocyarcy}	FOS _{rotation} FOS _{overtuning}	
High	High	100-year	1.75	2.0	1.75	
High	Moderate	50-year	1.5	1.75	1.5	
High	Low	25-year	1.5	1.75	1.5	
Low	High	100-year	1.75	2.0	1.75	
Low	Moderate	25-year	1.5	1.75	1.5	
Low	Low	10-year	1.25	1.5	1.25	

1. Large Wood Material Force - Dry (FLWMd)

 $F_{LWMd} = V_{LWMd} * \gamma_{wood}$ V_{LWMd} = volume of dry large wood material Equation 3

Equation 18

Comment: Assumed to be zero because structure assumed to be submerged during design event.

2. Boulder Ballast Force (Fboulder)

N _{bouldersub}			Number of submerged boulders (from design)
d _{bouldersub}	2.5	ft	Effective diameter of submerged boulder (ft, from spec)
$\gamma_{boulder}$	146	lb/ft ³	unit weight of boulders (Table 5)
γ_{water}	62.4	lb/ft ³	unit weight of water
F _{bouldersub}		lb	Eqn. 6
N _{boulderdry}			Number of dry boulders (from detail)
d _{boulderdry}	2.5	ft	Effective diameter of dry boulder (ft, from spec)
F _{boulderdry}		lb	Eqn. 7
F _{boulder}		lb	Eqn. 5

ion 6
on 7

٨ d_{boulderdry} = effective diameter of unsubmerged boulders

Comment: The intent is design without the use of boulders so it is assumed no boulders are used.

1

20

Project: Project No.:

Tucannon Project Number

Number of Type 1 buried logs (from detail)

Average embedded length of Type 1

3. Soil Backfill Force (F_{soil})

N_{logssub1}

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/28/2023	
$F_{soil} = \sum_{i}^{n} V_{soilsub_{i}} * \gamma'_{soil} + V_{soildry_{i}} * \gamma_{soil}$	Equation 8
$V_{sollsub_{i}} = L_{eb_{i}}d_{bole_{i}}h_{sollsub_{i}}$ $V_{sollsub_{i}} = volume of submerged soil above log i$ $L_{eb} = embedded length of log i$ $d_{i} = bole diameter of log i$	Equation 9

d_{bolel} = bole diameter of log i h_{sollsubl} = height of submerged soil above log i

$V_{solidry_i} = L_{eb_i} d_{bole_i} h_{solidry_i}$	Equation 10
$V_{solidary} = volume of dry soil above log i$	
$h_{solidryi}$ = height of dry soil above log i	
$\gamma_{soil} = (99.2 + 18.6 * \log(d_{50}))$	Equation 11
d_{50} = median grain size in millimeters	
$\gamma_{soil}' = \gamma_{sat} - \gamma_w$	Equation 12
(SGmodt+P)+Vm	

$\gamma_{sat} = \frac{(SG_{rock} + e)*\gamma_w}{1 + e}$	Equation 13
$e = \frac{SG_{rock}*\gamma_w}{\gamma_{soil}} - 1$	Equation 14

L _{eb1}	20	ft	logs (from detail)
d _{bole1}	1.25	ft	Average diameter of Type 1 logs (from detail)
		6	Average height of submerged soil
h _{soilsub1}		ft	above Type 1 log (from detail)
V _{soilsub1}		ft ³	Volume of submerged soil above
v soilsub1		n.	Type 1 log (from detail)
h _{soildry1}		ft	Average height of dry soil above
oonary r		-	Type 1 log (from detail) Volume of dry soil above Type 1 log
V _{soildry1}		ft ³	(from detail)
			Number of Type 2 buried logs (from
N _{logssub2}	2		detail)
	07	4	Average embedded length of Type 2
L _{eb2}	27	ft	logs (from detail)
d	1.75	ft	Average diameter of Type 2 logs
d _{bole2}	1.75	<u> </u>	(from detail)
h _{soilsub2}	3	ft	Average height of submerged soil
JUISUDZ	_		above Type 2 log (from detail)
V _{soilsub2}	284	ft ³	Volume of submerged soil above
			Type 2 log (from detail) Average height of dry soil above
h _{soildry2}		ft	Type 2 log (from detail)
			Volume of dry soil above Type 2 log
V _{soildry2}		ft ³	(from detail)
N			Number of Type 3 buried logs (from
N _{logssub3}			detail)
1	25	ft	Average embedded length of Type 3
L _{eb3}	25		logs (from detail)
d _{bole3}	1.75	ft	Average diameter of Type 3 logs
DOIES			(from detail)
h _{soilsub3}		ft	Average height of submerged soil
			above Type 3 log (from detail) Volume of submerged soil above
V _{soilsub3}		ft ³	Type 3 log (from detail)
			Average height of dry soil above
h _{soildry3}		ft	Type 3 log (from detail)
V/		-3	Volume of dry soil above Type 3 log
V _{soildry3}		ft ³	(from detail)
2/	131	lb/ft ³	Specific Gravity of bank/backfill
γ_{soil}	131		material (Table 5)
γ_{water}	62.4	lb/ft ³	Unit weight of water
SG _{rock}	2.64		Specific Gravity of Rock (Using unit
rock	2.04		weight of bedrock from Table 5)
e	0.26		Eqn. 14
e γ _{sat}	144	lb/ft ³	Eqn. 13
е		lb/ft ³	

Project: Project No.:	Tucannon Project Num	ıber		Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/28/2023
4. Pile Skin Friction				
N _{piles}			Number of piles (Design)	$F_{piles-v} = N_{piles} * \pi * d_{piles} * L_{piles}(k_s * \tan\frac{2}{3}\phi * \sigma' + \frac{d_{piles}}{4} * (\gamma_{wood} - \gamma_w))$
d _{piles}	0.83	ft	Diameter of piles (Design)	Equation 15
L _{piles}	8	ft	Embedded length of piles (Design)	N _{plies} = number of piles d _{alles} = diameter of piles
k _s	1		Coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density)	$\phi_{plies} = \text{orbit}(0, p, plies)$ $L_{plies} = \text{orbit}(0, plies)$ $k_s = \text{coefficient of lateral earth pressure (0.5 to 1.5 depending on soil and density) \phi = \text{internal angle of friction of soils}$
Placement Method	Excavated		Method of pile placement	φ - internal angle of friction of solis $\sigma' = L_{piles} * (\gamma_{sat} - \gamma_w)$ Equation 16
Placement Multiplier	0.25		See RBDG (P. 52)	
Pile Placement Location	Bed		Bed or Bank	
Φ_{soil}	0.72	rad	Internal angle of friction of soils (Table 5)	
γ_{soil}	137	lb/ft ³	Specific Weight of Soil	
е	0.20		Eqn. 14	$\gamma_{sat} = \frac{(sc_{rock} + c) \cdot \gamma_{W}}{1 + c}$ Equation 13
γ_{sat}	148	lb/ft ³	Eqn. 13	$e = \frac{5G_{relck} + \gamma_{tot}}{\gamma_{sout}} - 1$ Equation 14
γ_{water}	62.4	lb/ft ³	Unit weight of water	
σ	681	lb/ft ²	Eqn 16	
γ_{wood}	33	lb/ft ³	Unit weight of wood	
F _{piles-v}		lb	Eqn 15	

Assumptions:

* k_s = 1

** This calculation is based on the assumption that piles are driven or vibrated into place. If piles are drilled or excavated, the associated coefficicient of lateral earth pressures shall be approx. 50% and 25% of the driven value, respectively. *** For use in buoyancy calculations, piles must be mechanically fastened.

Equation 2

**** Top 2' of pile embedment disregarded for calculation to account for vortex shedding.

5. Large Wood Material Force - Submerged (FI WMs)

 $F_{LWMs} = V_{LWMs} * (\gamma_{wood} - \gamma_w)$ $V_{LWMs} = volume of submerged large wood material$ $\gamma_{wood} = unit weight of wood$ $\gamma_w = unit weight of water$

	-		
N _{logssub1}	1		Number of log type 1 (from detail)
L _{log1}	20	ft	Length of log type 1 (from detail)
d _{bole1}	1.25	ft	Diameter of log type 1 (from detail)
d _{rw1}		ft	Diameter of rootwad of log type 1 (from detail)
V _{LWMs1}	25	ft ³	Volume of LWM1
N _{logssub2}	2		Number of log type 2 (from detail)
L _{eb2}	40	ft	Length of log type 2 (from detail)
d _{bole2}	1.75	ft	Diameter of log type 2 (from detail)
d _{rw2}	4.38	ft	Diameter of rootwad of log type 2 (from detail)
V _{LWMs2}	227	ft ³	Volume of LWM2
N _{logssub3}			Number of log type 3 (from detail)
L _{eb3}	40	ft	Length of log type 3 (from detail)
d _{bole3}	1.75	ft	Diameter of log type 3 (from detail)

Volume of Rootwad

National Large Wood Manual. 2016 Equation 6-4 (p. 6-38) $V_{rw} = \pi^* t_k * w_k^2 / 3$ $\pi^* (2d_{bole}) * (1/2d_{rw})^2 / 3$

- t_k = Thickness of rootwad measured in direction parallel to trunk
 - = 4 times the radius of the log $(4r_k or$

w_k =

Radius of rootwad

Project: Project No.:

Tucannon Project Number

/w 02.4		
γ _w 62.4	lb/ft ³	Unit weight of water
γ _{wood} 33.0	lb/ft ³	Unit weight of logs
V _{LWMs} 252	ft ³	Volume of LWM
V _{LWMs3}	ft ³	Volume of LWM3
d _{rw3}	ft	Diameter of rootwad of log type 3 (from detail)

6. Lift Forces (F₁)

CL	0.45		Lift Coefficient
A _{LWM}	75	ft ²	Calc'd in Drag Forces
γw	62.4	lb/ft ³	Unit weight of water
U _o	6.5	ft/s	upstream velocity (from model)
g	32.2	ft/s ²	Unit weight of water
FL	-1,382	lb	Eqn. 4

Comment: Lift forces neglected per Section 6.4.2 of BOR Risk Based Design Guidelines

Factor of Safety

FOS _b =	(F _{LMDd} +F _{bould}	_{ders} +F _s	$_{oil}$ +F $_{piles-v}$) / (F $_{LWMs}$ +F $_{L}$)
F _{LWMd}		lb	Assumed Zero
F _{boulder}		lb	
F _{soil}	23,071	lb	
F _{piles-v}		lb	
F _{LWMs}	-7,410	lb	
FL	-1,382	lb	
FOS _b	2.62		STABLE FOR BUOYANCY

Summary Comments:

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/28/2023 = 2.5 times the radius of the log $(2.5r_k)$ or 1.25d $_{\text{bole}})$ or 1/2 d $_{\text{rw}}$ specified

Equation 4

 $C_{L} = lift coefficient$ A_{LWM} = area of large woody material perpendicular to flow $u_u = upstream$ channel velocity at design event g = acceleration due to gravity

2+g

 $F_L = -\frac{c_L * A_{LWM} * \gamma_W * U_0^2}{c}$

Project: Tuc Project No.: Proj

Tucannon Project Number

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM sliding.

Assumptions:

1) The LWM structure behaves as a single structure under the design load and will not experience any shearing at joints.

2) The effect of soil in back of the structure is negligible.

3) The structure will be submerged during the design event.

4) Channel velocity (V_c) taken from hydraulic model.

5) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings.

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

 $\textit{FOS}_{sliding} = \frac{|\textit{Fhd} + \textit{F}_{f} + \textit{F}_{piles-h} + \textit{F}_{passive}|}{\textit{F}_{d} + \textit{F}_{hu} + \textit{F}_{i}}$

Equation 41

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Sliding Factor of Safety (FOS_{sliding}) for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{siding}	FOS _{bouyancy}	FOS _{rotation} FOS _{overturning}
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1,75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1,75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Drag Force (F_d)

Yu	3.50	ft	Upstream water depth
hdebris	5	ft	Debris height (incl. accumulation)
wdebris	15	ft	Debris width (incl. accumulation)
Debris Shape	Rectangle		
A _{LWM}	75	ft ²	Wetted area of LWM
γ_{water}	62.40	lb/ft ³	Unit weight of water
v _c	6.50	ft/s	Velocity from Model
g	32.20	ft/s ²	Acceleration due to gravity
A _b	75.00	ft ²	Debris area
W _{channel}	60	ft	Channel width
C _d	1.50		NLWM Worst Case
F _d	4606	lb	Eqn 19

$F_d = \frac{C_D * A_{LWM} * \gamma_W * U_c^2}{2 * g} \quad \text{Equation 19}$

 $F_d = drag force$

 $C_d = drag \ coefficient$ $A_{iyms} = area \ of \ wetted \ debris \ based \ on \ the \ upstream \ water \ surface$

was a rea or were a construction on the upsit can water surface elevation projected normal to flow direction and the potential drift accumulation

 $\gamma_w = unit weight of water$

 $U_c = velocity$ in contracted section

g = acceleration due to gravity

Cd can be assumed 0.9 when fully submerged, 1.5 when WSEL within

 $C_{d-applied} = \frac{c_d}{(1-B)^2}$

C_d is typically estimated as 1.0 Equation 27

Project: Project No.: Tucannon Project Number

3. Impact Force (Fi)

F _i Assumption:	5,207	lb	Eqn 30
R _{max}	0.8		Response ratio for impulsive loads
C _b	0.6		ASCE 7-05
Degree of Screening or Sheltering Upstream	Limited upstream screening, flow path 20' wide		ASCE 7-05
C _d	0.625		Figure 11 (need water depth from model)
C _o	0.8		Coefficient of orientation
C _i	0.8		Coefficient of importance (from Table 6)
∆t	0.03	sec	Impact Interval (0.03 sec recommended)
V _{channel}	6.5	ft/s	Velocity from Model
g	32.2	ft/s ²	Acceleration due to gravity
W _{debris}	2,566	lb	weight of debris
γwood	33	lb/ft ³	Unit weight of wood
V _{debris}	78	ft ³	Volume of debris
d _{rwdebris}	3	ft	Rootwad diameter of debris member (Design)
d _{boledebris}	1.5	ft	Bole diameter of debris member (Design)
L _{debris}	40	ft	Length of debris member (Design)

Analyst: ASD Calculations Checked By: ALJ Latest Revision: #########

Equation 30

 $F_i = \frac{\pi w_{debris} * V_{channel} * C_i * C_o * C_d * C_b * R_{max}}{2 * g * \Delta t}$

 $F_i = impact force$

 $w_{debris} = weight of debris$

g = acceleration constant due to gravity

 $V_{channel} = water velocity in channel$

 $\Delta t = time from initial velocity to zero velocity$

 $C_i = coefficient of importance$

 $C_o = coefficient of orientation = 0.8$

 $C_d = coefficient of depth$

 $C_b = coefficient of blockage$

 R_{max} = response ratio for impulsive loads = 0.8

*Largest impact force would be generated by structure being struck by floating large key member. For impact calculation, assuming 18" diameter, 30' long member with rootwad impacts structure. **See Section 6.3.3 of LWM RBDG (P. 44) for debris loading sizing.

4. Friction Force (F_f)

ϕ_{bed}	0.72	radians	Calculated for streambed material (small cobble)
μ_{bed}	0.87		Eqn 32
F _{LWMd}		lb	Buoyancy Calcs
F _{boulder}		lb	Buoyancy Calcs
F _{soil}	23071	lb	Buoyancy Calcs
F _{piles-v}		lb	Buoyancy Calcs
F _{LWMs}	-7410	lb	Buoyancy Calcs
FL	-1382	lb	Buoyancy Calcs
F _b	14,279	lb	Eqn 17
F _f	-12,413	lb	Eqn 31

Equation 31 $F_f = -\mu_{bed} * (F_b - F_{piles-v})$ $F_{f} = force due to frictional resistance$ Fo-Foiles-v >0 Equation 32 $\mu_{bed} = \tan \emptyset$ $F_b = F_{LWMs} + F_{LWMd} + F_L + F_{boulder} + F_{soil} + F_{piles-v}$ Equation 17

Note:

*If buoyancy forces are less than vertical pile forces (Fb-Fpiles-v<0), then friction force = 0.

Project: Project No.: Tucannon Project Number

5. Passive Forces (F_{passive})

^ф bank	0.70	radians	Calculated for bank material (very	1
	4.60		course gravel) Egn 34	4.59890993
rc _p	62.4	lb/ft ³	•	4.0909099
?∕water ⊃∕	131	lb/ft ³	Unit weight of water Unit weight of soil	-
7 _{soil}			Previously calculated for buoyancy	-
γ_{sat}	144	lb/ft ³	calcs	
N _{logssub1}	1		Number of log type 1 (from detail)	
Orientation ₁ **	Perpendicular		Perpendicular or Parallel to flow	
L _{eb1}	20	ft	Length of log type 1 (from detail)	
d _{bole1}	1.25	ft	Diameter of log type 1 (from detail)	
D _{sub1}		ft	Depth of submerged soil above log 1	
D _{dry1}		ft	Depth of dry soil above log 1	
σv 1		lb/ft ²		
$\sigma_{v1} * L_{eb1} * \gamma_{soil}$		lb		
N _{logssub2}	2		Number of log type 2 (from detail)	
Orientation ₂ **	Perpendicular		Perpendicular or Parallel to flow	
L _{eb2}	27	ft	Length of log type 2 (from detail)	
d _{bole2}	1.75	ft	Diameter of log type 2 (from detail)	
D _{sub2}	3	ft	Depth of submerged soil above log 2	
D _{dry2}		ft	Depth of dry soil above log 2	
σ v2	244	lb/ft ²		
σ _{v2} *L _{eb2} *γ _{soil}	23,071	lb		
N _{logssub3}			Number of log type 3(from detail)	
Orientation ₃ **	Parallel		Perpendicular or Parallel to flow	
L _{eb3}	40	ft	Length of log type 3 (from detail)	1
d _{bole3}	1.75	ft	Diameter of log type 3 (from detail)	1
D _{sub3}		ft	Depth of submerged soil above log 3	
D _{dry3}		ft	Depth of dry soil above log 3	1
σ _{v3}		lb/ft ²		1
σ _{v3} *L _{eb3} *γ _{soil}		lb]
F _{passive}	-53,050	lb	Eqn 31	

** Eqns 33 through 35 represent the case where passive forces act

$F_{passive} = -0.5 * K_p * \sum_{i}^{n} \sigma_{v_i} * L_{em_i} * d_{log_i}$	Equ
$K_p = \frac{1 + \sin \emptyset}{1 - \sin \emptyset}$	Equ
$\sigma_{v_i} = D_{sub_i} * (\gamma_{sat} - \gamma_{water}) + D_{dry_i} * \gamma_{soil}$	Equ
D _{subi} = depth of submerged soil above log i	

 $D_{atyi} = depth of any solid above log i$ $<math>D_{atyi} = depth of dry solid above log i$ $<math>L_{emi} = embedded length of log i$ $<math>d_{logi} = diameter of log i$

Project:	Tucannon
Project No.:	Project Number

6. Lateral Resistance from Piles (Fpiles-h)

N _{piles}			Number of piles (Design)
d _{piles}	0.83	ft	Diameter of piles (Design)
L _{piles}	8	ft	Embedded length of piles below scour (Design)
Placement Method	Excavated		Method of pile placement
Placement Multiplier	0.25		See RBDG (P. 52)
Pile Placement Location	Bed		Bed or Bank
$\gamma_{\rm water}$	62.4	lb/ft ³	Unit weight of water
$\gamma_{ m soil}$	137	lb/ft ³	Unit weight of soil
γ_{e}	74.6	lb/ft ³	Eqn 37
Φ_{soil}	0.72	radians	Calculated for material pile is located
К _р	4.81		Eqn 38
h _{load} **	2.5	ft	Height above scour depth load is applied
F _{piles-h}		lb	Eqn 15

Analyst:	ASD
Calculations Checked By:	ALJ
Latest Revision:	##########

 $F_{piles-h} = -N_{piles} * \frac{l_{pile}^2 \cdot \gamma_{e^*} d_{pile} k_{pile}}{h_{load} + L_{pile}}$ Equation 36

 N_{piles} = number of piles L_{pile} = length of pile embedded below potential scour depth

 $\gamma_e = \gamma_s - \gamma_w$ effective unit weight of soil Equation 37 $\gamma_s = dry$ unit weight of the soil

 $\gamma_w = unit$ weight of the soil

 d_{pile} = diameter of the pile h_{load} = height above the potential scour depth the load is applied

 $K_p = \frac{1 + \sin \phi}{1 - \sin \phi}$

Equation 38

* Top 2' of pile embedment disregarded for calculation to account for vortex shedding.

** Analysis also assumes that the resultant force is located at half of the flow depth on the upstream side of the LWM structure to produce a conservative moment on the pile.

Factor of Safety

FOS _{sliding} =	(F hd +F f +F piles	_{s-h} +F _{passi}	ve) / (F _d + F _{hu} + F _i)
F _d	4,606	lb	
F _{hu}		lb	
F _{hd}		lb	
Fi	5,207	lb	
F _f	-12,413	lb	
F _{passive}	-53,050	lb	
F _{piles-h}		lb	
FOS _{sliding}	6.67		STABLE FOR SLIDING

Rotation Calculations

Project: Tucannon Project Number: Project Number

Analyst: ASD Calculations Checked By: ALJ Latest Revision: #########

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against LWM structure horizontal rotation.

Assumptions:

1) The LWM structue behaves as a single structure under the design load.

2) The effect of soil in back of the structure is negligible.

3) The structure will be submerged during the design event

4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells that are automatically updated are this color)
Output (Cells that are automatically updated with previously calculated values are this color)

FBD and Equations:

 $FOS_{rotation} = \frac{MR_{rotation}}{MD_{rotation}}$

Table 4. Minimum recommended factors of safety.

Equation 45

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Rotation Factor of Safety (FOS_{rotation}) for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

 Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{stiding}	FOS _{bocyancy}	FOS _{rotation} FOS _{overturning}
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

1. Resistance to Rotation (MR_{rotation} and MD_{rotation})

 $\begin{array}{l} MD_{rotation} = (F_i + F_d + F_{hu}) * (\frac{L_{sp} + L_{ebp}}{2}) \\ L_{sp} = length of wood structure from tip to point of rotation measured \end{array}$

- perpendicular to flow
- $L_{ebp} = embedded \ length \ of \ wood \ structure \ measured \ perpendicular \ to \ flow$

$$MR_{rotation} = \left| F_{hd} * \left(\frac{L_{sp} + L_{ebp}}{2} \right) + F_{passive} * \frac{L_{ebp}}{2} + F_{f} * \frac{L_{sp}}{2} + \sum_{i}^{n} F_{pile-h_{i}} * L_{ph_{i}} \right|$$

Equation 43

 $F_{pile-h_i} = \frac{F_{piles-h}}{N_{piles}}$ Equation 44 L_{phi} = distance from pile 'i' to the point of rotation measured perpendicular to flow

MD _{rotation}	93,220	lb*ft	Egn 42
F _{hu}		lb	Upstream Hydrostatic Forces (Calc'd in Sliding)
F _d	4,606	lb	Drag Forces (Calc'd in Sliding)
Fi	5,207	lb	Impact Forces (Calc'd in Sliding)
L _{ebp}	7	ft	Embedded length of wood structure measured perp. to flow
L _{sp}	12	TT	Length of wood structure from tip to point of rotation measured perpendicular to flow

Resisting:

F _{hd}		lb	Downstream Hydrostatic Forces (Calc'd in Sliding)
F _{passive}	-53,050	lb	Passive Forces (Calc'd in Sliding)
F _f	-12,413	lb	Friction Forces (Calc'd in Sliding)
F _{pile-h}		lb	Lateral Resistance from Piles (Calc'd in Sliding)
F _{pile-hi}		lb	Lateral Resistance from Piles (Calc'd in Sliding)
N _{piles}			Number of Piles (Design)
	25	ft	Distance from pile to the point of rotation measured
Lphi	20	i.	perp. to flow.
MR	260 153	lb*ft	Fan 43

Factor of Safety

FOS rotation =	MR rotation / MD rotation			
MD _{rotation}	93,220 lb			
MR _{rotation}	260,153 lb			
FOS _{rotation}	2.79	STABLE FOR ROTATION		

Rotation Calculations

Project: Project Number:

Tucannon Project Number

Overturning Calculations

Project: Tucannon Project Number:

Project Number

Analyst: ASD Calculations Checked By: ALJ Latest Revision: 2/28/2023

Spreadsheet Description

Purpose: The spreadsheet below is used to calculate the Factor of Safety against vertical overturning.

Assumptions:

1) The LWM structure behaves as a single structure under the design load.

2) The effect of soil in back of the structure is negligible.

3) The structure will be submerged during the design event

4) This LWM structure experiences the largest loads. All LWM structures on site will be designed based on this LWM structure's loadings

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells requiring input from a dropdown list)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this color)

FBD and Equations:

 $FOS_{overturn} = \frac{MR_{overturn}}{MD_{overturn}}$

Equation 49

* PROJECT NAME has a "XXXX" Public Safety Risk Factor and a "XXXX" Property Damage Risk Factor. The Design Overturn Factor of Safety (FOS_{overturn}) for this structure is #.# per Table 4 "Minimum Recommended Factors of Safety".

1. Resistance to Overturn (MR_{rotation} and MD_{rotation})

Driving:			
Fi	5,207	lb	Impact Forces (Calc'd in Sliding)
F _d	4,606	lb	Drag Forces (Calc'd in Sliding)
F _{hu}		lb	Upstream Hydrostatic Forces (Calc'd in Sliding)
FL	-1,382	lb	Lift Forces (Assumed Zero in Buoyancy Calcs)
Yu	3.5	ft	Upstream water elevation from model
d _{ubury}		ft	Depth at upstream side of structure from channel bottom to point of rotation measured perp to flow
Ls		ft	Length of structure parallel to flow
MDoverturn	26.285	lb*ft	Ean 46

Resisting.

Resisting.			
F _{hd}		lb	Downstream Hydrostatic Forces (Calc'd in Sliding)
F _{passive}	-53,050	lb	Passive Forces (Calc'd in Sliding)
F _b	14,279	lb	Buoyancy Forces (Calc'd in Sliding)
F _{pile-v}		lb	Lateral Resistance from Piles (Calc'd in Sliding)
Y _d	3.5	ft	Downstream water elevation
d _{dbury}	6	ft	Depth at downstream side of structure from channel bottom to point of rotation measured perp to flow
N _{piles}			Number of Piles (Design)
L _{pvi}		ft	Distance from pile to the point of rotation measured parallel to flow.
F _{pile-vi}		lb	Eqn 48
MRoverturn	318.303	lb*ft	Ean 47

Factor of Safety

FOS _{overturn}	12.11		STABLE FOR OVERTURN
MR _{overturn}	318,303	lb	
MD _{overturn}	26,285	lb	
FOS overturnon =	MR overturn / MD overturn		

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{aliding}	FOS _{bocyancy}	FOS _{rotation} FOS _{overturning}
High	High	100-year	1.75	2.0	1.75
High	Moderate	50-year	1.5	1.75	1.5
High	Low	25-year	1.5	1.75	1.5
Low	High	100-year	1.75	2.0	1.75
Low	Moderate	25-year	1.5	1.75	1.5
Low	Low	10-year	1.25	1.5	1.25

$MD_{overturn} = F_i * \left(Y_u + d_{bury}\right) + F_d * \left(\frac{Y_u}{2} + d_{bury}\right) + F_{hu} * \left(\frac{Y_u}{3} + du_{bury}\right) + |F_L| * L_s$ Equation 46

 $du_{bury} = depth$ at the upstream side of the structure from channel bottom to point of rotation measured perpendicular to flow Ls = length of structure measured parallel to flow

$(F_b - F_L - F_L) + (F_b - F_L) - F_L$	$MR_{overturn} = F_{hd} * \left(\frac{Y_d}{2} + dd_{bury}\right) + F_{passive} * \left(dd_{bury}\right)$
Equation 47	$F_{piles-v}) * \frac{L_s}{2} + \sum_i^n F_{pile-v_i} * Lpv_i$
Equation 48	$F_{nile-v} = \frac{F_{piles-v}}{v}$

$L_{pvi} = distance from pile 'i' to the point$	t of rotation measured parallel to flow
$FOS_{overturn} = \frac{MR_{overturn}}{MD_{overturn}}$	Equation 49

Overturning Calculations

Project: Project Number:

Tucannon Project Number

Summary Comments:

 Analyst:
 ASD

 Calculations Checked By:
 ALJ

 Latest Revision:
 2/28/2023

Factor of Safety Summary

Project:TucantProject Number:Project

Tucannon Project Number
 Analyst:
 ASD

 Calculations Checked By:
 ALJ

 Latest Revision:
 2/28/2023

Spreadsheet Description

Purpose: The spreadsheet below summarizes the factors of safety for the LWD structure.

Assumptions:

Input (Cells Requiring Input from Structure Detail)
Input (Cells requiring Input from Hydraulic Model)
Input (Cells automatically populated from Input to Interface Tab)
Output (Cells automatically updated are this color)
Output (Cells automatically updated with previously calculated values are this

Tables and Equations:

$FOS_b = \frac{F_{LWMd} + F_{buildets} + F_{soil} + F_{piles-\pi}}{ F_{LWMs} + F_L }$	Equation 18	
FOS _b = buoyancy factor of safety		
$FOS_{sliding} = \frac{ F_{hd} + F_f + F_{pliss-h} + F_{passive} }{F_d + F_{hu} + F_l}$	Equation 41	
$FOS_{rotation} = \frac{MR_{rotation}}{MD_{rotation}}$	Equation 45	
FOS _{overturn} = MR _{overturn} MD _{overturn}	Equation 49	

Table 4. Minimum recommended factors of safety.

Public Safety Risk	Property Damage Risk	Stability Design Flow Criteria	FOS _{stiding}	FOS _{bocyarcy}	FOS _{rotation} FOS _{overturning}	
High	High	High 100-year 1.75	1.75	2.0	1.75	
High	Moderate	50-year	1.5	1.75	1.5	
High	Low	25-year	1.5	1.75	1.5	
	High	100-year	1.75	2.0	1.75	
Low Moderate		25-year	1.5	1.75	1.5	
Low	Low	10-year	1.25	1.5	1.25	

1. Factors of Safety Summary

Project Public Safety Risk	High
Project Property Damage Risk	Low

Safety Factors		Minimum Recommended Safety Factor	Calculated Safety Factor	Result
Buoyancy	FOS₅	1.5	2.62	OK!
Sliding	FOS _{sliding}	1.25	6.67	OK!
Rotation	FOS _{rotation}	1.25	2.79	OK!
Overturn	FOS _{overturn}	1.25	12.11	OK!